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ABSTRACT 
We introduce context-aware scalable authentication (CASA) as a 
way of balancing security and usability for authentication. Our 
core idea is to combine a number of passive factors for 
authentication (e.g., a user’s current location) with appropriate 
active factors. In this paper, we provide a probabilistic framework 
for dynamically selecting an active authentication scheme that 
satisfies a security requirement given passive factors about a user. 
We also present the results of two user studies evaluating the 
feasibility and users’ receptiveness of our concept. Our results 
suggest that location data has good potential as a passive factor, 
and that users can reduce up to 68% of the number of user 
authentication when using the user authentication system designed 
with CASA compared to an authentication system that requires a 
fixed active authentication consistently. Furthermore, more than 
half of the participants who tested our prototype preferred to use 
our user authentication system on their phones. 
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General Terms 
Security, Human Factors 
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1. INTRODUCTION 
Reliable authentication is an essential requirement for secure 
systems. Today, passwords are the most common form of 
authentication. However, passwords are also a major source of 
security vulnerabilities, as they are often easy to guess, re-used, 
forgotten, shared with others, and are susceptible to social 
engineering [5,6,16,22,23,25]. We argue that the commoditization 
of sensor technologies coupled with advances in modeling people 
and places offers us unique new opportunities for simplifying and 
strengthening authentication. This insight is the basis for what we 
call context-aware scalable authentication, or CASA.  
CASA embodies two core ideas. First, these cheap digital sensors 
combined with models of people and places can offer us passive 
and robust multi-factor authentication. By passive authentication, 
we mean using background sensing and modeling to help verify or 
infer an individual’s identity (such as location data, Wi-Fi MAC 
address, IP address, nearby devices detected, number of times 
having logged in at this place), as opposed to active authentication 
techniques that require explicit interaction from the end-user (such 

as passwords and fingerprint biometrics). While behavioral 
biometric authentication also combines multiple features in 
authenticating users, these features tend to be constrained to a 
specific domain (e.g., key typing patterns) [29]. CASA 
differentiates itself by considering a wide array of features 
extending across multiple domains. Second, this passive multi-
factor authentication can be used to modulate the level of active 
authentication needed based on the situation at hand. For example, 
with CASA, we want authentication to be quick and easy for 
situations perceived as low-risk (such as being located at work or 
home), and tough and reliable for high-risk situations (such as 
being located in an unfamiliar place). We believe that this 
approach can improve usability while still maintaining a 
reasonable level of security in the common case, while also 
improving security in unusual and risky cases. 

In this paper, we take a step towards this vision of CASA, 
focusing on assessing the feasibility and usability of our ideas. 
This paper is comprised of three parts. The first part introduces 
our CASA framework that allows us to choose active factors that 
provide enough information given passive factors. The second part 
presents results of users’ mobility pattern analyses, which 
indicates feasibility of using location data as a passive factor. The 
third part presents the results of a field study using a prototype that 
uses either weak or strong active authentication based on a 
person’s current location.  

2. RELATED WORK 
Existing user authentication systems primarily depend on three 
types of mechanisms: what you know, what you have and what you 
are. Passwords are the most commonly used authentication system 
based on what you know. Password authentication has advantages 
in its simplicity and convenience [23]. However, many studies 
have found that passwords still put too much burden on users, 
resulting in users adopting insecure practices such as choosing 
weak passwords or reusing passwords [5, 25]. Our work in this 
paper does not seek to replace passwords, but rather complement it 
by taking into account passive factors and using those to modulate 
the level of authentication needed. More specifically, in our 
second analysis, we look at two cases: (a) no authentication when 
at home or work, and a PIN when at other places, and (b) a PIN 
when at home or work, and a password when at other places. We 
used these combinations as one instance of fast versus reliable 
authentication. Looking at other appropriate combinations is an 
area of future work for us. 

Other authentication systems based on what you have, including 
eToken USB devices [1], RSA securID [2], and Google’s two-step 
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verification [3]. Our work in this paper involves the user carrying 
a smartphone, but using the smartphone to gather data rather than 
being used as a token. We envision in the long-term that having 
one’s smartphone nearby could be used as a passive factor, acting 
as a sort of token (though not in the traditional sense). 

Finally, there are authentication systems leveraging what you are, 
or biometrics. A wide range of biometric techniques has been 
commercialized, including fingerprint scanners, iris recognition, 
and voice recognition, and face recognition. These kinds of 
biometrics tend to focus on physical characteristics of individuals. 
Researchers have also investigated a number of novel biometric 
techniques, e.g., walking gait [28], keyboard typing pattern [29], 
what applications and features on a mobile phone are being used 
[27], blinking pattern, and writing style. These kinds of biometrics 
tend to focus on behaviors of individuals.  

Our work differs from traditional work on biometrics in two ways. 
First, we seek to use commodity devices as well as sensors that 
already exist on many computers today. In particular, in this paper, 
we examine the potential for using location a possible factor for 
authentication. Second, we seek to understand how to use these 
passive factors as a continuous and passive form of authentication, 
as well as how to use this information to influence the level of 
active authentication needed, as the situation warrants. 

2.1 Modulating the Level of Authentication 
It is worth noting that some online services already modulate the 
level of authentication based on the situation. For example, many 
bank web sites ask extra questions when logging in from a 
previously unseen network IP address. Facebook asks additional 
questions when using an unusual IP address, using a process 
called social authentication [4]. Users are asked to correctly 
identify several of their friends before being allowed to login, 
based on pictures that those friends have uploaded.  

The main difference with our work on CASA is to vastly expand 
the number of factors used when adjusting the level of 
authentication needed. Our work will also focus on authenticating 
primarily with a device rather than an online service, as there are 
serious privacy issues with having behavioral data being stored on 
multiple online services. We do believe that CASA can be used to 
simplify authentication with remote online services. However, this 
is currently out of scope of the current paper. 

2.2 Authentication Leveraging Context 
There have been several systems using some form of contextual 
information to authenticate users. For example, proximity has 
been used to authenticate users [8, 11, 24] and pairing [18]. Seifert 
et al. proposed TreasurePhones that protected information on 
mobile phones based on a user’s location as detected by near field 
communication technology [33].  
The closest work to ours is the implicit authentication work by 
Jakobsson et al. [27]. Their core idea is to see whether user 
behavior patterns can be used to authenticate users. They 
considered two behavioral features from the mobile device: time 
lapse since the user last checked email and GPS location. The two 
feature scores are combined through a weighted linear function to 
calculate an overall “authentication score”, which is then 
compared with a pre-defined threshold to authenticate the user.  

We have similar goals, in terms of simplifying and strengthening 
authentication using sensor-based approaches. However, our work 
differs from these past works in several ways. First, we seek ways 
of selecting appropriate active authentication given passive factors 
rather than replacing active authentication with combinations of 

passive factors. Second, we offer a generalizable framework for 
combining multiple passive and active factors. Finally, we offer 
more empirical data of combining active and passive factors from 
both system perspectives and users’ perspectives. 

2.3 Human Mobility Analysis 
There has also been prior work examining people’s mobility 
patterns, showing that there are many predictable patterns [7, 17, 
20, 30]. For example, past work by Gonzalez et al. [21] analyzed 
mobile phone cell tower data of 100,000 people over six months 
(based on call log and SMS log data). They found that people’s 
trajectories had a great deal of temporal and spatial regularity, 
with people spending a great deal of time in just a few highly 
frequented locations. Hayashi et al. [22] present the results of a 
diary study investigating where people login to desktop and laptop 
computers. They found that 84.3% of logins were done at home 
(59.2%) and work (25.1%). 

Combined, this past work suggests that location data may be quite 
promising in two ways. First, strong, predictable patterns in one’s 
mobility patterns would make location data very useful as a 
passive factor for authentication. Second, if people often use their 
devices in just a few places with reasonable physical security (e.g., 
homes or workplaces), then modulating the level of authentication 
needed for those places could improve usability. 

However, currently, there is little empirical data on where and 
how often people actually use their smartphones. This paper also 
contributes to this body of knowledge by providing analyses of 
where people actually use their smartphones, using GPS and Wi-
Fi data for fine-grained information with ground truth.  

3. CONTEXT-AWARE SCALABLE 
AUTHENTICATION 
In this section, we introduce a probabilistic framework used in 
context-aware scalable authentication (CASA). One core aspect of 
CASA is to combine multiple factors to authenticate a user using a 
naïve Bayes classifier. This framework can also be used to 
calculate a “risk assessment” value to determine the appropriate 
level of active authentication required given other factors.    

Most existing user authentication schemes can be considered 
binary classifiers, classifying a person as a legitimate user (𝑢 = 1) 
or not (𝑢 = −1). We can also model these schemes 
probabilistically as shown in Eq. (1) where 𝑢 denotes the 
prediction (i.e., the result of the user authentication), 𝑃(𝑢 = 1|𝑠) 
denotes the probability the requester is the legitimate given the 
observation s,  𝑃(𝑢 = −1|𝑠) denotes the probability the person is 
not the legitimate user given the observation s, and α denotes a 
how conservative the user authentication is. The α parameter can 
be set based on one’s comfort level with expected costs of false 
accepts and false rejects.  
 𝑢 = 1,

−1,
𝛼𝑃 𝑢 = 1|𝑠 > 𝑃(𝑢 = −1|𝑠)
𝛼𝑃 𝑢 = 1|𝑠 ≤ 𝑃(𝑢 = −1|𝑠) (1) 

For instance, for PIN-based authentication, if the system observes 
that a requester enters the correct PIN, the probability that the 
requester is legitimate is much higher than the probability he is 
not. Thus, the system predicts 𝑢 = 1 and authenticates the user. 
Conversely, the system predicts the opposite if the requester enters 
a wrong PIN.  

Many current authentication schemes focus on a single factor that 
has large differences between the probability distributions of 
𝑃(𝑢 = −1|𝑠) and 𝑃(𝑢 = 1|𝑠) across the range of values of s. In 
contrast, CASA combines multiple factors that may or may not 
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have as pronounced of a difference between the probability 
distributions of 𝑃(𝑢 = −1|𝑠)  and 𝑃(𝑢 = 1|𝑠), but taken together 
offer strong advantage over a single factor approach. We define a 
factor as any data that provides information about a user’s identity. 
Example factors include a user’s location; voice obtained through 
a microphone; time since last login; and the observation that the 
user enters a correct (or incorrect) PIN; and other biometric 
information. 
In Eq. (2), we show the underlying probabilistic model of multi-
factor authenticators such as CASA. Again, u denotes whether 
(u=1) or not (u=-1) a user is legitimate, and si denotes the 
observation value for the i-th factor. 

𝑢 = 1,
−1,

𝛼𝑃(𝑢 = 1|𝑠!,… , 𝑠!) > 𝑃(𝑢 = −1|𝑠!,… , 𝑠!)
𝛼𝑃(𝑢 = 1|𝑠!,… , 𝑠!) ≤ 𝑃(𝑢 = −1|𝑠!,… , 𝑠!)

 (2) 

We can reformulate Eq. (2) into Eq. (3) using the sign function, 
which extracts the sign (positive or negative) of a real number. 

 
𝑢 = sign log

𝛼𝑃(𝑢 = 1|𝑠!,… , 𝑠!)
𝑃(𝑢 = −1|𝑠!,… , 𝑠!)

 (3) 

Using Bayes’ theorem, 𝑃(𝑢|𝑠!, 𝑠!,… , 𝑠!) can be simplified into 
Eq. (4). Then, by assuming conditional independence between 
each identifier, Eq. (4) can be written as Eq. (5), where P(u) 
denotes a prior probability of how likely a person is a legitimate 
user (or not) in general. P(u) will be canceled in the following 
reformulations. 
 

𝑃 𝑢 𝑠!, 𝑠!,… , 𝑠! =
𝑃 𝑠!, 𝑠!,… , 𝑠! 𝑢 𝑃 𝑢

𝑃 𝑠!, 𝑠!,… , 𝑠!

=
𝑃(𝑠!|𝑢)!

!!! 𝑃 𝑢
𝑃 𝑠!, 𝑠!,… , 𝑠!

 

 

(4) 

(5) 

Finally, by substituting 𝑃(𝑢|𝑠!, 𝑠!,… , 𝑠!) in Eq. (3) with Eq. (5), 
we obtain a naïve Bayes classifier (Eq. (6)). Intuitively, the 
parameter in the sign function increases with the probability that a 
requester is legitimate and vice versa. 

𝑢 = sign log 𝛼
𝑃(𝑢 = 1)
𝑃(𝑢 = −1)

+ log
𝑃(𝑠!|𝑢 = 1)
𝑃(𝑠!|𝑢 = −1)

!

!!!

 (6) 

Note that because each factor might not be conditionally 
independent, Eq (6) may have approximation errors compared to 
Eq. (3). However, in Eq. (6), we can discuss each factor 
independently by estimating 𝑃 𝑠! 𝑢 = 1 /𝑃(𝑠!|𝑢 = −1). Further, 
in practice, we believe the approximation errors will be limited 
because we can choose largely independent factors (e.g. voice and 
PIN). Thus, we believe that the benefit of the independence 
assumption outweighs its drawbacks. 

3.1 Selecting an Active Factor 
CASA uses this probabilistic model to select an active factor that 
provides enough evidence to authenticate a user, given a set of 
passive factors. The model allows us to compare the strength of 
the evidence using the terms in the sign function in Eq. (6). 

More specifically, let’s assume we want to choose an active 
identifier S that provides as much evidence when a user is at a café 
as compared to the situation where the user typed her correct PIN 
at her home. Assuming that location is the only passive factor, the 
condition that S should satisfy can be written as Eq. (7). The first 
term in Eq. (6) is canceled. Ps,1(1)  denotes the probability that the 
active factor S indicates that a person is the legitimate user when a 
person is actually a legitimate user. Ps,-1(1) denotes the same when 
a person is not the legitimate user. PL,1(l) (or  PL,-1(l)) denotes the 
probability the person is at the location l when she is the legitimate 
user (or not). H and C denote home and café respectively.  

log
𝑃!,!(1)
𝑃!,!!(1)

+ log
𝑃!,!(𝐶)
𝑃!,!!(𝐶)

≥ log
𝑃!"#,! 1
𝑃!"#,!! 1

+ log
𝑃!,!(𝐻)
𝑃!,!!(𝐻)

 (7) 

Eq. (7) can be rewritten as Eq. (8), which quantifies the security 
criteria that an active factor S should satisfy to meet the security of 
the legitimate user typing her PIN at home, given that the active 
factor S authenticate the person at café. 

log
𝑃!,! 1
𝑃!,!! 1

≥ log
𝑃!"#,! 1
𝑃!"#,!! 1

+ log
𝑃!,! 𝐻
𝑃!,!! 𝐻

− log
𝑃!,! 𝐶
𝑃!,!! 𝐶

 

=log
𝑃!"#,!(1)
𝑃!!",!!(1)

𝑃!,!(𝐻)
𝑃!,!(𝐶)

𝑃!,!!(𝐶)
𝑃!,!!(𝐻)

 

 

(8) 

A legitimate user is more likely to be at her home than to be at 
café. Thus, 𝑃!,! 𝐻 /𝑃!,!(𝐶) > 1. In contrast, someone else is 
much more likely to be at the café than to be at the user’s home, 
i.e., 𝑃!,!! 𝐶 /𝑃!,!!(𝐻) ≫ 1. 

Therefore, Eq. (10) indicates that the active factor should be 
stronger than the PIN. Furthermore, Eq. (8) offers a quantitative 
guideline for the strength of the active identifier S could be given 
the user’s location. Our model can also include other passive 
factors, such as sensor data, time since last login, or number of 
times logged in at given places. We describe another example of 
selecting active factor in our field study. 

4. USER STUDIES 
CASA offers us a model for combining a variety of factors for 
user authentication. For our next step, we wanted to investigate 
how useful and feasible this framework might be in practice. To 
have strong reliability in the results, we opted to start from a 
relatively simple set of active and passive factors rather than 
combining many factors at once.  

First, we investigated the potential of using location as a passive 
factor. Past work suggests that people spent most of their time in a 
few locations [7,21,22]. However, there is little empirical data on 
how frequently people used their smart phones at these locations. 
We collected this information to estimate usefulness of location 
information for CASA.  

Second, we conducted a one-week field study with 32 participants, 
having them try out our prototype that modulates active factors 
based on their locations to understand how well our ideas might 
work in practice, as well as to obtain feedback from participants. 

5. MOBILITY PATTERN ANALYSIS 
We recruited multiple Android phone users through Craigslist and 
e-mails. Participants were asked to install our logging app from 
the Android Market. Participants were enrolled in a raffle for $50 
Amazon gift cards as compensation. Over five months, we 
collected data from 128 participants. In this analysis, we focused 
on 36 participants with at least seven days of logs.  

5.1 Data Collection 
Our app sampled location every three minutes regardless of 
whether participants were interacting with their phones. Location 
was obtained through standard Android APIs using Wi-Fi and cell 
tower information. The standard API also provided expected error 
for each location estimate. We discarded location data when the 
expected errors were greater than 200 meters. Our app also logged 
the smartphone’s running processes every 30 seconds when the 
smartphone was not in sleep mode. The timestamps of these logs 
let us infer when participants used their phones. 

We analyzed location traces from 36 participants. The data 
collection periods varied from seven days to 140 days. The median 
length of the data collection was 26.5 days.  
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We divided the latitude and longitude space into discrete 0.002 × 
0.002 latitude/longitude grids (each cell was approximately 200 × 
200 meters in/near North America) as previously done in [13]. The 
particular choice of discretization was based on practical 
considerations balancing the accuracy of Android’s positioning 
system with granularity of the analysis. 

5.2 Identifying Phone Activation 
To track phone use, the system ran a low level thread that logged 
active processes every 30 seconds. When the phone was in sleep 
mode, the thread was automatically paused and no log entries were 
made. Thus, by examining the timestamps of log entries, the 
phone state could be determined. 
Theoretically, intervals between log entries that exceed 30 seconds 
signified a phone activation event after being in sleep mode once. 
However, initial trials of this log analysis identified two common 
sources of error. The first issue was the low priority of the logging 
thread leading to fluctuations in the sequentially logged times - 
variations typically in the region of 5 seconds. To deal with this, 
we considered valid differences between log time stamps to be in 
the range 30-35 seconds. The second issue was phone activations 
caused by push notifications (e.g. email arrival). We adopted a 
conservative approach to mitigate false positives relating to this 
issue. Essentially, phone activation events were counted only 
when there were two successive log timestamps after observing at 
least a 35 seconds gap. This filtered out short phone activations 
due to push notifications because the phone went back to the sleep 
mode quickly after the automatic activations. A consequence of 
these manipulations was that a certain proportion of valid user 
activations (e.g. very brief glances and interactions) of the phone 
would not be counted. However, despite this cost, we believe that 
these manipulations ensured the validity of the study by counting 
only real user activations of their phones. 

5.3 Results of Mobility Pattern Analysis 
We identified 55840 phone activation events in our dataset. 
Participants activated their phones 27.4 times a day on average 
(SD=19.7). Table 1 shows the distribution of time spent and logins 
at the places where the participants spent most of their time. We 
first calculated each participant’s top five places based on the 
amount of time spent using location data alone (see the two 
columns under label “Time”). Then, for each participant, we 
calculated the number of phone activations at each of these places 

using location data and process data (see the two columns under 
label “Activations”). 

The results indicated that people spent 57.8% of their time at two 
locations, presumably home and work. Before conducting this 
study, it was unclear to us how often people would use their 
smartphones at home and work, since these would be places where 
people would most likely have easy access to other devices with 
network connectivity and larger displays (e.g., desktop and/or 
laptop computers) at these locations. Nevertheless, our results 
showed that these top two places accounted for 60.8% of phone 
activation events on average (SD=14.5%). 

This result provides supporting evidence that people exhibit strong 
patterns in where they use their smartphones, suggesting that 
location could be a very useful passive factor. This result also 
indicates that we can positively impact both usability and security 
if we adjust the active factor based on location data coupled with a 
very trivial user model (home and work). As mentioned 
previously, this analysis assumes reasonably good physical 
security at home and work.  

6. FIELD STUDY 
In this field study, we deployed a prototype that dynamically 
selected active factors based on participants’ location (i.e., 
whether they are at home, work, or some other places) to 
investigate users’ reactions to CASA. Another purpose of this 
study was to investigate how much effort our participants could 
reduce in user authentication when using our prototype, using 
authentication logs collected by our prototype.  

6.1 Participants 
We recruited 32 participants using our university’s participant 
recruitment website. Their age ranged from 18 to 40 years old 
with a mean age of 24 years. Our participants consisted of 26 
students, 5 full-employed and 1 non-employed. Twenty-three out 
of 32 participants were living with others in their homes. We 
compensated participants $40 for their participation in the study.  

Participants were assigned to one of two conditions based on 
whether they used any security lock on their phones prior to this 
study. Participants not using a security lock (e.g., PIN, Draw-A-
Secret or password) were assigned to the none-PIN condition. 
Those already using a security lock were assigned to the PIN-
password condition. In essence, participants used the same 
authentication they already used at home and work, and had  
stronger active authentication at other places. 

6.2 Procedure 
In the first session, we installed our prototype on participants’ 
Android phones. We asked participants in the none-PIN condition 
to choose a PIN. For participants in the PIN-password condition, 
we asked them to choose a password in addition to a PIN.  
During the study period, when the participants turned on their 
phone displays, the prototype selected an active factor based on 
the participant’s location (home, work, and other) and condition 
(the none-PIN or PIN-password condition) (see Table 2). After 
participants authenticated, the prototype asked the participants to 
answer if they were at home, work, or other places. After one 
week, we had a second session where we asked participants to 
complete a post-survey, and conducted a follow up interview that 
lasted about 15 minutes.  

6.3 Prototype with Active Factor Selection 
Our prototype used location as a passive factor and selected an 
active factor from three options: no active factor, a PIN and a 

Place Time Activations 
Mean [%] SD [%] Mean [%] SD [%] 

1 (Home) 38.9 20.2 31.9 15.6 
2 (Workplace) 18.7 12.6 28.9 18.1 
3 9.9 8.4 18.5 13.7 
4 5.5 4.8 10.8 8.5 
5 4.3 4.7 5.2 4.7 
Other place 22.6 13.1 4.5 4.6 

Table 1. The distribution of the time spent and the phone 
activation events at the places where participants spent most of 
their time. Place 1 to 5 denote the places where participants 
spent most time (1) to fifth most time (5).  

Condition Home Workplace Other places 
None-PIN None None PIN 

PIN-Password PIN PIN Password 
Table 2. Active factors required at different locations. The 
prototype required the same active factors as participants 
were using at their homes and workplaces while required 
stronger active factors at other places. 
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password. First, we describe how we can utilize the CASA in 
selecting active factors using the PIN-password condition as an 
example. In the PIN-password condition, we selected active 
factors to provide the same evidence as typing a PIN at workplace. 

Because location is the only passive factor in our prototype, Eq. 
(6) can be simplified to Eq. (11) and (12). These equations denote 
the conditions that active factors should satisfy to provide no less 
evidence than being at home (Eq. (11)) or at other places (Eq. 
(12)), where W, H and O denotes workplace, home and other 
places respectively, and 𝑓 𝑙!, 𝑙!  and 𝑔(𝑆) is defined as shown in 
Eq. (13). Intuitively, log 𝑓 𝑙!, 𝑙!  means the likelihood that a 
person is a legitimate user when she is at l2 compared to when she 
is at l1. If it is less likely, log 𝑓 𝑙!, 𝑙!   becomes positive. Then, 
the evidence provided by the active factor (the term on the left 
side) should be greater than that of PIN. If it is more likely, 
log 𝑓 𝑙!, 𝑙!   becomes negative. Then, the active factor could be 
weaker than PIN. As log 𝑓 𝑙!, 𝑙!  increases, the user’s location 
provides stronger evidence towards authentication. 𝑔(𝑆) denotes 
how strongly an active factor S indicates users’ identities.  

log  𝑔(𝑆) ≥ log  𝑔(𝑃𝐼𝑁) + log 𝑓(𝑊,𝐻)  (11) 

log  𝑔(𝑆) ≥ log  𝑔(𝑃𝐼𝑁) + log 𝑓(𝑊,𝑂)  (12) 

𝑓 𝑙!, 𝑙! =
𝑃!,!(𝑙!)
𝑃!,!(𝑙!)

𝑃!,!!(𝑙!)
𝑃!,!!(𝑙!)

,𝑔 𝑆 =
𝑃!,!(1)
𝑃!,!!(1)

 (13) 

We estimated 𝑔(𝑆) based on the entropy of four-digits PINs (~9 
bits) and passwords (~18 bits) according to the estimations by 
NIST [9]. Assuming that the authentication system allows three 
trials and that a legitimate user always type a PIN and a password 
correctly, then we have PPIN,1(1)=1,    PPIN,-1(1)=3/29,    
PPwd,1(1)=1,   PPwd,-1(1)=3/218 and 𝑃!"#$,! 1 = 𝑃!"#$,!! 1 = 1. 
Thus, 𝑔 𝑃𝐼𝑁 = 2! 3, 𝑔 𝑃𝑤𝑑 = 2!" 3 and 𝑔 𝑁𝑜𝑛𝑒 = 1. 

To calculate log 𝑓 𝑊,𝐻  and log 𝑓 𝑊,𝑂  accurately, we need 
further empirical data collection. However, because our primary 
purpose in this study was to investigate participants’ responses to 
our concept rather than applying CASA precisely, we 
approximated these values. We approximate the values in a way 
that log 𝑓 𝑙!, 𝑙!  becomes smaller to avoid overestimating the 
strength of the evidence provided by location information. We 
discuss the data collection issue more in the discussion section. 
For 𝑃!,! 𝐻  and 𝑃!,! 𝑊 , we used 0.389 and 0.187 that were 
obtained in the first study (Table 1). For 𝑃!,!(𝑂), we used 0.099 to 
be conservative.  Additionally, we assumed that 𝑃!,!! 𝑙  was 
proportional to the number of people who can physically come 
into the location. Because we do not have empirical data about 
𝑃!,!! 𝑙 , we make assumptions after showing its effect on the 
active factor selection. 

In Figure 1, the diagonal plots show how the right sides of the Eq. 
(11) and (12) change along with PL,-1(l2)/ PL,-1(l1). The horizontal 
lines show log𝑔(𝑆) for each factor. Thus, satisfying Eq. (11) is 
equivalent to the condition that the lower diagonal plot is below 
one of the horizontal lines at given PL,-1(l2)/ PL,-1(l1). We assume 
that the number of people who can access home is less than that of 
workplace and more than 1/10 of that of workplace. The lower 
diagonal plot in the segment PL,-1(l2)/ PL,-1(l1) =[0.1, 1] is between 
the horizontal lines representing PIN and None under this 
assumption. Therefore, we select PIN as an active factor that 
satisfies Eq. (11).  Similarly, we assume that the number of people 
who can access other places is more than that of workplace and 
less than 100 times of that of workplace, the upper diagonal plot in 
the segment PL,-1(l2)/ PL,-1(l1) = [1, 100] is between the horizontal 

lines representing Password and PIN. Therefore, we select 
passwords as an active factor that satisfies Eq. (12). 

We made two assumptions above; however, we believe that these 
assumptions are safe to make considering the ranges. Additionally, 
our choice of active factors (Table 2) made active authentication 
more secure than what our participants used prior to the study. Our 
prototype required the same active factors as what they used prior 
to this study at their homes and work, and required more secure 
active factors at other places. Thus, we made the authentication 
more secure than what our participants used prior to our study. 

6.4 Location Classification 
Our prototype estimated the phones’ locations using the network 
positioning system provided by Android OS every 150 seconds. 
The positioning system returns latitude, longitude, and estimated 
error. When the error was greater than 200 meters, our prototype 
discarded the location as unreliable information. 

When the participants turned on their display, our prototype took 
the latest location information and then classified the location as 
home, workplace, or other using the 5-nearet neighbors within 100 
meter radius. 

7. RESULTS 
7.1 Location Classification 
In the study, our prototype asked for the ground truth of locations 
after each authentication and trained the 5-nearest neighbor 
classifier using all the ground truth data collected up to the 
classification. The classification accuracy was 92%. Most of the 
misclassifications happened when the participants transitioned 
from one location to another because location information was 
sampled every 150 seconds. 

7.2 User Authentication 
Our participants activated their phones a median of 20.7 times a 
day. Figure 2 shows the distribution phone activations per day. 
The gray and black bars represent participants in the PIN-
password condition and in the none-PIN condition respectively. 
The participants in the PIN-password and the none-PIN condition 
activated their phone median of 33.6 times and 15.8 times a day 
respectively. The difference between the two distributions was 
statistically significant (p<0.05 in χ2 test). This result might be 
because those who use their phones more frequently are more 

Figure 1. The diagonal plots show how the right sides of the 
Eq. (12) and (13) change along with PL,-1(l2)/ PL,-1(l1). The 
horizontal lines denote log g(S). 

 
Figure 2. The number of phone activations per day. Gray and 
black bars denote participants in the PIN-password condition 
and none-PIN condition respectively.  
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likely to configure security locks on their phone because they are 
more likely to have sensitive data on their phone. 

Participants in the PIN-password condition activated their phones 
55% of the time at home or work, and none-PIN participants 68% 
of the time (see Table 3). Table 3 shows that for participants in the 
none-PIN condition, 32% of phone activations required 
authentication (PIN), and 68% of phone activations did not (at 
home or work). Similarly, for participants in the PIN-password 
condition, 45% of phone activations required the stronger 
authentication (password), and 55% used the equivalent to what 
participants were already using (PIN at home or work). 

7.3 Participants’ Receptiveness 
In the post-survey, we asked participants to answer questions 
about their perceptions of our prototype using a 5-point Likert 
scale (higher scores being more positive). Participants in both 
conditions were very receptive to our prototype. In the followings, 
the number in the parentheses denotes the median of their ratings. 
The participants in the none-PIN condition reported that the 
concept of not requiring a PIN at home and work while requiring a 
PIN at other places was useful (4) and very easy to understand (5). 
They also reported that they felt our prototype was secure (4) 
compared to not having any security lock on their phone. They 
also somewhat agreed (3.5) to the statement that they would use 
our prototype if it was available on their phones. One of the 
participants commented, “I don't normally use a security lock, but 
I would be much more inclined to use one if it didn't require 
constant unlocking.” 

Similarly, participants in the PIN-password condition reported that 
the concept of requiring a PIN at home or work while requiring a 
password was neither useful nor useless (3) and easy to understand 
(4). They also reported that they felt the prototype was more 
secure (4), as easy to use as requiring a PIN at all the places. They 
were neutral to using our prototype if it was available on their 
phones. In the PIN-password condition, our prototype required a 
PIN at homes and work while requiring passwords at other places. 
The configuration might have made participants less positive 
about our prototype.  

We further asked about the configuration where our prototype did 
not require PINs at homes or work while it required a PIN at other 
place (i.e., the same configuration as one used in the none-PIN 
condition). The participants reported that the configuration would 
be easy to use (4) and as secure as a requiring a PIN at all places 
(3), and they agreed (4) that they would use the system if it were 
available on their phones.  

As these results indicate, participants were receptive to our 
prototype. Although the participants in the PIN-password 
condition were neutral to use our prototype with the PIN-password 
configuration, our participants rated the none-PIN configuration as 
easier to use than the security lock that they used prior to our 
study, and more or equally secure to the security lock. 
Furthermore, more than half of the participants preferred to use 
our prototype on their phones. 

8. DISCUSSION AND FUTURE WORK 
We investigated the feasibility of a user authentication system that 
changes active factors based on users’ locations. However, our 
work has several limitations. For example, for each factor, CASA 
needs estimates of 𝑃(𝑠|𝑢 = −1), the probability that a person 
trying to be authenticated is not legitimate. As exemplified in the 
field study, there are cases where rough estimates are sufficient. 
Additionally, for some passive factors, such as behavioral 
biometrics, it is easy to estimate. However, the estimation could be 
challenging for other passive factors. 

Our participants rated our system as being as secure as using PIN 
at all places. However, since users are not always good at 
evaluating security, it is necessary to conduct a more formal 
security evaluation. Furthermore, over half of our participants 
were university students, potentially biasing our results.  
One line of future work is to evaluate other passive factors and 
user models. Prior work has investigated the security of some 
passive factors, such as behavioral biometrics. However, the 
security of other passive factors is not clear, especially when 
malicious attackers try to impersonate legitimate users. 
Furthermore, in this paper, we used a very simple model (one 
passive factor modeling home, work, other). This model had the 
benefit of being simple to implement and simple to understand. It 
is clearly possible to build more sophisticated models, combining 
more passive factors and incorporating more information about the 
user (e.g. last login time, number of times logged in at a given 
location). However, this approach raises new questions about how 
well users can understand what the system is doing, and could lead 
to frustration if it is hard to predict.  

Furthermore, we believe it is worth investigating different 
combinations of active factors as well as new “good enough” 
forms of active authentication.  For example, most active 
authentication schemes today are designed for high accuracy in 
differentiating between legitimate and illegitimate users. By 
leveraging multiple passive factors, it is possible to relax this 
constraint, requiring only “good enough” accuracy.   

9. CONCLUSION 
In this paper, we introduced Context-Aware Scalable 
Authentication (CASA), which envisions combining multiple 
passive and active factors to authenticate users. We also proposed 
a quantitative way of choosing active factors to provide desirable 
security given passive factors. 

We also demonstrated the feasibility of selecting an active factor 
based on passive factors through two user studies. In the first user 
study, we observed that the participants logged into their phone 
60% of the time at their homes or workplace. This data indicated 
that there was substantial potential to improve both the usability 
and the security of a user authentication by choosing active factors 
based on users’ locations. In the second study, we developed a 
user authentication system that changes active authentication 
schemes (no authentication, PIN, and password) based on users’ 
locations. Through a field study, we observed that our prototype 
improved 32% to 45% of the user authentication at less frequently 
visited places without affecting usability of the rest of the user 
authentication at home or workplaces.  

Although there is ample opportunity for further investigation, we 
believe that this paper proposed a novel authentication framework 
and demonstrated its feasibility and the usefulness. We hope this 
stimulates future researches towards our vision of developing user 
authentication systems that require minimum but sufficient active 
factors. 

Condition Home Workplace Other places 
None-PIN 10.4 1.9 5.7 
PIN-password 13.4 4.3 14.1 

Table 3. The median number of the phone activations per 
day at each location. Both the security lock group and the 
no security lock group activated phones more than 50% of 
time at homes or workplaces. 
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