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Head-Mounted Display based Virtual Reality is proliferating. However, Visually Induced Motion Sickness (VIMS), which prevents
many from using VR without discomfort, bars widespread adoption. Prior work has shown that limiting the Field of View (FoV)
can reduce VIMS at a cost of also reducing presence. Systems that dynamically adjust a user’s FoV may be able to balance these
concerns. To explore this idea, we present a technique for standard 360º video that shrinks FoVs only during VIMS inducing scenes.
It uses Visual Simultaneous Localization and Mapping and peripheral optical flow to compute camera movements and reduces FoV
during rapid motion or optical flow. A user study (N=23) comparing 360º video with unrestricted-FoVs (90º), reduced fixed-FoVs (40º)
and dynamic-FoVs (40º-90º) revealed that dynamic-FoVs mitigate VIMS while maintaining presence. We close by discussing the user
experience of dynamic-FoVs and recommendations for how they can help make VR comfortable and immersive for all.
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1 INTRODUCTION

Virtual Reality (VR) has resurged as a medium for work and entertainment [3], bolstered by new consumer head-mounted
displays (HMDs) [70], that are powerful enough to deliver engaging and immersive VR experiences and affordable
enough to reach for mainstream adoption. While HMDs’ advances in tracking, latency, refresh rate, resolution, and
optics have substantially improved VR [2], key user experience issues still prevent many users from enjoying VR, and
consequently, bar widespread adoption [29, 37, 94]. Among these barriers, Visually Induced Motion Sickness (VIMS),
also commonly referred to as VR Sickness, is particularly prominent, as up to 67% of adults experience mild to severe
symptoms such as nausea, dizziness, sweating and vomiting [94] and women are more likely to manifest symptoms
than men [3, 46, 76].
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The complex nature of VIMS has lead to a large body of literature [29, 98], exploring issues such as the polysymp-
tomatic (multiple symptoms) and polygenic (different manifestation of symptoms) profile of users [51, 94], the difficulties
in quantifying symptoms [4, 56, 59, 101], the impact of different technologies (e.g. CAVE, HMDs) [29, 98] and types of
content (e.g. games, video) [29], proposing diverse theoretical accounts of the biological mechanisms of its symptoms
[98] and exploring inconsistencies in the terminology used to describe it [51, 98]. A large number of prevention/reduction
techniques for VIMS have been proposed and are mostly focused on HMD-based VR, and specifically for live computer
generated environments [29, 98]. While some of these techniques have been shown to be effective, through manipula-
tions such as restriction of a user’s field of view (FoV) during rapid motion [41], they are currently incompatible with
pre-rendered media formats such as 360º video.

This incompatibility matters because, while 360º video has been characterized as less immersive than computer
generated VR [103], its realism, ease of use and affordability mean it is in widespread commercial use. It has also been
deployed to achieve objectives such as prototyping [43] or to develop production-quality immersive content [12, 13].
Furthermore, research has explored how to augment 360º videos to make them influence and/or respond to behaviour
[7, 52, 65, 66, 80, 86, 102]. Based on the prevalence and potential of the 360º video format, and the lack of existing VIMS
mitigation techniques that can be applied to it, this paper explores how an existing popular VIMS mitigation strategy,
FoV Restriction [17, 41], can be applied to 360º video. In addition, while this strategy has been shown to be successful in
reducing VIMS by blocking peripheral motion stimulation during locomotion, it comes at the cost of lowering presence.
Designed with the goal to be as unobtrusive as possible [41], systems that dynamically adjust the FoV [2, 8, 53, 63, 120]
may be able to balance the trade-off between reducing VIMS and restricting presence.

Therefore, this paper presents a novel technique for Dynamic FoV Restriction in 360º videos. Firstly, we use Visual
Simultaneous Localization and Mapping (SLAM) system [107] to differentiate between when the camera is static and
when the camera is moving, and use this to apply VIMS mitigation only when there is movement. Secondly, we use the
optical flow (motion pattern caused by the relative motion of objects compared to the camera/observer) of the user’s
peripheral vision, where optical flow is primarily detected [113], to determine the aperture of the FoV, restricting it
in relation to the magnitude of peripheral optical flow. We evaluate our technique with a within-subjects user study
(N=23) where we compare our technique (dynamic-FoV, ranging from 40º-90º) against two baselines: unrestricted-FoV
(90º), where no FoV restriction is applied, and fixed-FoV (40º), where a fixed FoV restriction is applied throughout the
video. Our findings show that dynamic-FoV is effective in reducing VIMS (to the levels achieved by fixed-FoV ) and also
maintains higher levels of presence (similar to those reported in unrestricted-FoV ). Dynamic-FoV was found to be well
received by most participants, and sometimes viewed as being part of the narrative of the video. The key contribution of
this paper is the description of a novel technique for Dynamic FoV Restriction in 360º Video, validated by its empirical
evaluation. Considering the need for design guidelines for VR and 360º video [7, 54, 68, 97], we conclude by discussing
the user experience of dynamic-FoVs through the combination of data from questionnaires, run-time performance and
semi-structured interviews, and delineate practical recommendations for including dynamic-FoVs in future experiences.

2 RELATEDWORK

2.1 VIMS

The complex nature of VIMS has led to terms such as simulator sickness, cybersickness, and VR sickness [51, 98] to be
used interchangeably when referring to the occurrence of motion sickness symptoms without real physical movement
[51]. These symptoms are categorized as nausea (stomach awareness, sweating, salivation, etc.), oculomotor (headaches,
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eye strain, etc.) and disorientation (vertigo, dizziness, etc.) [56]. For VIMS, disorientation is the main symptom category
[93] but oculomotor symptoms are also commonly reported [58], and symptoms are more severe when using HMDs
compared to screen-based simulators [41]. Furthermore, multiple factors such as age [10], gender [76], exposure length
[37], habituation [37], and type of content [50], have been identified as influencing the symptom profile and severity,
complicating VIMS research with users. Several theories have emerged to explain VIMS [38, 95, 110], but the Cue
Conflict or Sensory Mismatch theory remains the most widely accepted [58]. This theory posits that VIMS results
from a mismatch between (or within) the visual, vestibular, and somatosensory senses [58, 62]. For this reason, VIMS
mitigation strategies are concerned with reducing or eliminating sensory conflicts. In order to avoid these solutions
disrupting VR experiences, researchers typically aim to design techniques that are imperceptible to users.

2.2 VIMS Mitigation

Many VIMS mitigation strategies focus on reducing the mismatch between visual and vestibular systems through hard-
ware improvement, leading to high-precision low-latency tracking, high–frame-rate rendering, and short-persistence
displays [41, 73, 117]. Other hardware augmentations involve either creating a real vestibular response to movement
(e.g. through the use of omnidirectional rigs [31]), substituting proprioceptive feedback (e.g. use of smartphones’ inertial
sensors for "walking-in-place" [109], mapping pedaling in a mini exercise bike to walking in VR [45]) or inducing a
fake vestibular response (e.g., using 2-sided step-synchronized vibrations motors behind the ears [88]). The use of
internal/external tracking systems in consumer VR devices enables positional tracking, and subsequently, natural
walking as locomotion in virtual environments [120]. When possible, this is preferred since it generates sensory signals
(vestibular and proprioceptive) that match the visual virtual space [120]. When the tracking space is limited, redirected
walking [92] is a possible solution, since the virtual environment is dynamically and imperceptibly rotated to keep users
in the tracking space. When physical movement is not possible, when it does not match its virtual counterpart (e.g.
walking vs. flying), or when there is limited tracking space, artificial locomotion techniques through the use of remote
controllers are preferred [25]. These controllers can be used for teleportation through target selection [14], moving
the user to the selected viewpoint instantly, avoiding sensory conflict from virtual movement, but leading to spatial
disorientation and reduced presence. Controllers can also be used for joystick/steering-based movement, but again
generate discrepancies between visual and vestibular systems [3]. When traveling long distances in areas with visual
similarities, Freitag et al. [44] used dynamic speed in steering, "skipping" those areas without increasing discomfort.
Additionally, several works [24, 27, 41] have used the speed of movement from a controller as input for their VIMS
mitigation strategies.

The previously mentioned strategies are primarily focused on walking-based or non-natural travel techniques [78]
for computer-generated environments, where the user is able to move virtually. In 360º video, the user has no agency
in translational movement as they are dependent on the camera’s movement. Since these strategies are incompatible,
VIMS Mitigation for 360º video is focused on visual optimization of the stimuli, rather than the user. Among the
possible visual optimizations, rest-frames are elements present in the virtual environment that remain fixed in relation
to the real world regardless of the user behaviour [90]. In particular, adding rest-frames that are fixed to the head
reference frame, referred to as independent visual backgrounds, such as grids [35, 36, 82], clouds [64] or a virtual nose
[114, 116], have been show to mitigate VIMS, although contrary studies exist [121]. Cao et al. [27] have also proven the
efficacy of dynamic rest-frames in reducing VIMS, with the opacity of the added visual element being dynamically
controlled by the virtual movement. Other visual optimizations of the stimuli include blurring non-salient objects [5, 83],
blurring rotational movement [5, 23], head locking to avoid rotational movement [5, 55], simulated "blinking" during
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fast movement [5, 39], the "circle effect" [24, 71] (multi-camera, with a fixed peripheral ring and moving center) and the
"dot effect" [5, 24] (moving peripheral orbs countering the virtual direction). The most popular visual optimization, and
one that is often seen in studies involving 360º video, is FoV restriction, which we will review more extensively.

2.2.1 Field of View (FoV) Restriction. Peripheral vision (due to the existence of rods in the retina [111, 113]) is more
sensitive to motion from optical flow [11, 21]. Restricting peripheral vision in the FoV is effective since it blocks the
peripheral stimulation that causes sensory mismatches. When discussing FoV in HMDs, it is important to distinguish
the display FoV (area of the visual field occupied by the display) from the camera FoV (area of the visual environment
that is drawn in the display) [89]. The display FoV is a physical characteristic of the HMD, while the camera FoV is a
software characteristic, therefore, runtime FoV restriction refers solely to camera FoV. There is conflicting evidence
as to whether or not differences between the display and camera FoV cause discomfort [34, 75], but wide FoVs are
generally considered to induce more VIMS symptoms compared to narrow FoVs [34]. However, FoV restriction can
occur unintentionally due to the physical design of HMDs. While modern HMD development seeks to increase the
display FoV (and subsequently the camera FoV) towards the limits of human binocular vision (up to 190º) [33, 118],
current mid-tier consumer VR headsets more commonly feature a FoV of approximately 110º [77]. For some users, real
FoVs may be reduced by variations in facial structures, padding on HMDs and hidden area masks (areas that are not
rendered). In these ways, HMDs can restrict peripheral vision without intervention. However, since future HMDs will
try to match human binocular vision (up to 190º), it is expected the prevalence and severity of VIMS symptoms to
increase in the future.

FoV Restriction through software, also known as "vignetting" or "tunneling" [1, 85], is one of most popular VIMS
mitigation strategies, and is recommended by major companies in the area, such as Oculus [85] and Google [1], used in
popular applications such as Google Earth VR [48] and incorporated into games as an optional "Comfort Mode" [84].
Fixed FoVs restriction has been shown to reduce VIMS [19, 57, 100, 112]. However, it has also been linked to reduced
task performance in visual searches [112] and a reduced sense of presence [100]. Dynamic FoVs, which are adjusted in
size continuously, are a potential way to counteract these negative outcomes. They have been widely deployed. For
example, using physiological sensors, Kim et al. [60] detected when participants were experiencing VIMS and restricted
the FoV and notified users to stop and relax. Fernandes and Feiner [41] used input speed from a gamepad to determine
the size of a FoV restriction, leading to reduced VIMS. This work has also inspired studies investigating sex-bias in FoV
Restriction [3], dynamic-FoV based on self reported comfort [120], the technique’s usage in a commercial HMD game
[108], and the design of a dynamic foveated FoV for HMDs that incorporates gaze tracking [2]. Moreover, Norouzi et al.
[84] investigated the use of dynamic FoV restriction in amplified head rotation, but found that the use of FoV restriction
resulted in a statistically significant increase in symptoms.

FoV restriction strategies have also been applied to 360º video. Existing work has focused on replacing input from a
gamepad, as seen in Fernandes and Feiner [41], with input from the video itself, generated through computer vision
algorithms. When "scrubbing" through footage in their VR editor, Nguyen et al. [81] use the shakiness of the 360º
video (measured through a Lucas-Kanade algorithm for optical flow) to determine the FoV size. Kala et al. [53] used
feature extraction and a Lucas-Kanade algorithm for optical flow in a 360º video of a roller coaster to determine the
size of the vertical FoV in an attempt to simulate blinking. In an extension to this work, Lim et al. [63] use a predicted
sickness score (calculated through the content analysis of the video similar to Kala et al. [53] and head dispersion of the
user) to dynamically adjust the FoV. Both Kala et al. [53] and Lim et al. [63] do not use validated scores for sickness
or presence, so the efficacy of these strategies in reducing VIMS is debatable. Finally, Bala et al. [8] used optical flow
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Fig. 1. Dynamic FoV Restriction pipeline: A) Optical Flow through Gunnar Farnebäck, B) Grid grouping of Optical Flow values
(see supplementary files for video), C) OpenVSLAM’s camera pose estimation, D) Automatic movement classification based on
OpenVSLAM’s tracking, E) Map and speed estimation based on OpenVSLAM’s tracking, F) Optical Flow polling based on series of
peripheral concentric rings, G) Dynamic FoV restriction between 40º and 90º.

(through a Gunnar Farnebäck algorithm) to control user’s exposure to an independent visual background or/and to a
FoV Restrictor in a short 360º video of a roller coaster. Although they did not report statistically reduced VIMS, they did
note their strategies allowed for increased exploration when compared to a baseline. These works are tested in extreme
case videos (e.g. roller coasters), therefore are not generalizable to existing commercial content and do not explore the
impact of strategies on the overall user experience.

This prior work on applying optical flow and FoV restriction to 360º video has motivated us to explore further use of
computer vision algorithms to mitigate VIMS, how to make these methods more generalizable to diverse video content
and to understand their impact not only on VIMS reduction but as well as the user experience.

3 DESIGN OF DYNAMIC FOV RESTRICTION

In this section, we describe the design of our novel dynamic FoV restriction system for 360º video. We combine
precomputed optical flow detection with an equirectangular Visual SLAM to detect moments of visual motion that may
trigger or exacerbate VIMS, and seek to rectify or mollify these by adjusting the displayed FoV in real-time. To the best
of our knowledge, ours is the first system to apply SLAM to 360º video for VIMS mitigation, as well as to use optical
flow from peripheral vision. We present the details of our system design in the sections below.

3.1 Optical Flow

Optical flow is a motion pattern between consecutive frames caused by the relative movement of the environment
and the camera. Sparse optical flow algorithms (e.g. Lucas-Kanede [6], as used in Kala et al. [53]) return only a limited
set of flow vectors based on identifiable features, while dense optical flow (e.g. Gunnar Farnebäck [40], as used in
Bala et al. [8]) return flow vectors for all pixels. This latter algorithm is also more computationally expensive but
since video processing can be pre-computed, we chose to use a dense optical flow as it is more accurate. Optical Flow
was calculated in Python, using OpenCV 3 [20], a open-source library of computer vision algorithms (see A in Fig. 1).
Firstly, considering the large format of video, we resampled the video to a width of 640 pixels for faster processing and
to a constant bit rate. We extended the borders of the video by 5% of its width and height and copied the opposing
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image data to the borders, as done by Chou et al. [30]; this was done considering the visual discontinuity of borders
in equirectangular images that produce optical flow artefacts in the edges of an image. For the optical flow, we used
two pyramid layers, an image scale of 0.3, a single search iteration per pyramid level, a window size of 10, and a pixel
neighborhood of 5. Before saving the optical flow magnitude, values from the added border padding were cropped. To
reduce file size, optical flow was only saved every 5 frames, and values were grouped in 5x5 pixel squares to form a grid
(see B in Fig. 1). Optical flow magnitude was saved in a comma-separated values (CSV) file.

3.2 Visual SLAM

Visual Odometry (VO) and Simultaneous Localization and Mapping (SLAM) systems are crucial components in robotics
andmobile vision applications [28]. Visual Odometry is a process of estimatingmotion of an agent based on camera input,
while in SLAM systems, an agent must localize itself and build a map of the environment, without any prior knowledge
[119]. VO’s focus is on local consistency, while SLAM systems are more concerned with the global consistency of the
map (e.g. loop closures and reducing drift using external sensors) [119]. Visual SLAMs, whose main input source is video,
use feature/keypoint extraction to compute geometrical information [119]. OpenVSLAM [107] is an open-source system
using an indirect SLAM algorithm with sparse features and is compatible with monocular, stereo, and RGB-D cameras
(see C in Fig. 1). To the best of our knowledge, OpenVSLAM is the first open-source Visual SLAM framework that can
accept equirectangular videos. OpenVSLAM has 3 main modules: a tracking module (frame by frame estimation of
camera pose and creation of keyframes), a mapping module (uses keyframes to triangulate landmarks and create/extend
the map), and a global optimization module (loop detection and pose-graph optimization). To achieve compatibility
with different cameras, OpenVSLAM relies on a configuration file specifying parameters of the camera/video and
feature extraction (we used 3000 as a maximum number of keypoints, 1.3 scale factor, 12 levels, and a mask disabling
feature extraction in the top and bottom 10% of height). OpenVSLAM is primarily used for single scene videos, so we
extended the source code to be compatible with videos with several scenes. If tracking is lost (e.g. when scene changes
or when there are not enough trackable features), the system tries relocalization for 3 seconds; if the system is not able
to relocate, output files are exported, the system is reset and a new map is created. We extended the output files to
not only save the map database in the default MessagePack format but to also save a CSV with the result of tracking
(timestamp, frame number, tracking state, position and rotation of the camera, number of keypoints found/tracked,
number of landmarks found/tracked). Based on this data, we were able to visualize the camera path in 3D space and
calculate speed and acceleration (see E in Fig. 1) in R [91]. While these motion paths were consistent with the camera
movement, we were not able to maintain a consistent measure of speed/acceleration between scenes to be able to use it
as input. Future inclusion of sensor data from an inertial measurement unit might be able to resolve this issue. Joining
the tracking data from different maps, SLAM tracking (see D in Fig. 1)was dichotomised as "movement", "stationary",
and "no info" (e.g. when the mapping module is initializing and is not possible to determine movement). Short tracking
outliers caused by relocalization were filtered out before saving SLAM tracking data to a CVS file.

3.3 Restricted FoV

Our VR prototype was made in Unity (release 2020.2) for the Oculus Go, using the "Tunneling Demo" [1] from Google
Daydream Elements as a basis for the implementation of FoV restriction. Considering a 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑛𝑛𝑒𝑟 and 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑜𝑢𝑡𝑒𝑟

for the FoV, the tunneling effect can be separated into three parts: an inner space where the content is visible, a transition
space where the content is partially visible, and outer space where the content is completely blocked. The transition
space is equivalent to 10º and when we mention FoV size we are referring to 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑛𝑛𝑒𝑟 . Considering the Oculus Go,
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an FoV size of 90º corresponds to the effect not being visible (see G in Fig. 1). Considering the limits of peripheral vision
and the threshold for color perception at 60º [67], an FoV size of 40º (plus 20º of transition space) corresponds to the
effect blocking mid-peripheral and far peripheral vision (see G in Fig. 1). This FoV size is consistent with previous work
[3, 120].

For the Dynamic FoV, during runtime, SLAM tracking data is polled one second ahead of the current frame to
determine if the camera is moving or stationary (taking a conservative approach, "no info" is treated as moving). If
the camera is moving, optical flow values are polled one second ahead of the current frame. These values are polled
using a series of concentric rings of different diameters (see F in Fig. 1) to represent the peripheral vision, as proposed
by Lungaro et al. [67] for video streaming. Each ring represents a series of ray-casters (with the origin on the virtual
camera) that identify squares in the optical flow grid. We used 5 rings, starting at a diameter of 50º (increase of 10º for
each ring) with 50 ray-casters (increase of 10 rays for each ring) to model peripheral vision. To prevent ray-casters
from different rings focusing on the same square, the rings are rotated around the axis of the camera (increase of 5º
for each ring) and raycasted squares are filtered to be unique. During runtime, the absolute optical flow magnitude of
unique raycasted squares is averaged. This polled magnitude is used to determine the size of FoV. We empirically found
that the relation between polled magnitude and FoV size worked better with a polled magnitude of 50 corresponding
to a minimum FoV of 40º and a min magnitude of 15 corresponding to a maximum FoV of 90º. Therefore, FoV size is
calculated from linear interpolation of these values and smooth damped (gradually changing a value towards a desired
goal over time) over one second. Polling ahead of time, averaging magnitude and smooth dampening were used to
reduce interference from outliers (which might lead to infrequent flickering of FoV size).

4 USER STUDY

4.1 Media

Considering the goal of the study of evaluating the effectiveness of our design candidate, we carefully selected video
source material with considerable motion and duration, multiple scenes, and scenes with multiple points of interest.
Existing 360º Video data sets (e.g [32, 79]) mostly contain brief clips that are not sufficiently long to meet duration
recommendations for VIMS studies [105]. Therefore, we chose a commercially produced video, "Tales from the Edge"
[9], produced by GoPro and RYOT, where a wingsuit pilot flies through the Italian Alps to honor a fallen colleague.
We trimmed the end credits of the video to yield a clip with a duration of 8’49” (from 9’15” originally). Apart from its
rich narrative story, the video offers a variety of interesting scenes to test our algorithms (e.g. scene shot by drone, 3D
generated scene, etc.). To provide baseline data about the video contents, in terms of scene cuts or changes in scene
locomotion, two researchers individually divided the video into intervals and then merged their classifications into the
contents shown in table 1. Intervals in this process were manually classified as "stationary" (in green), "slow" (in yellow,
generally corresponding to rotational movement from the sway of a handheld or worn camera) and "fast" (in orange,
corresponding to fast translational movement such as flying).

We applied our optical flow and SLAM algorithms to this video. Fig. 2 represents a time series of the video, with
plots for optical flow magnitude, tracked landmarks by the Visual SLAM, and the automatic classification of movement
from the SLAM tracking. The background colour of the plots represents the manual classification of intervals (table
1). Our automatic classification (bottom of fig 2) is generally consistent with the manual classification, being able to
distinguish movement (yellow and orange) from stationary shots (green). Mismatches between manual and automatic
classification are due to the re-localization interval used in the Visual SLAM algorithm. While this interval could be
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Table 1. Manual classification of the level of motion in the video used in the study. We identify 28 intervals, each classified with
one of three levels of motion. Green shows "stationary" intervals (217.95s), yellow shows "slow" motion (85.54s), orange shows "fast"
motion (224.23s).

Frames
Start
Time Duration Description

𝐼1 1-210 0” 6.97s RYOT and GoPro logo.
𝐼2 211-690 7” 15.97s Two wingsuit pilots are preparing to jump the Dolomites, Italy. Camera is attached to helmet.
𝐼3 691-1543 23” 28.4s The pilots jumped, with the lead pilot is ahead of the camera direction.
𝐼4 1544-1865 51” 10.7s "Tales from the Edge" logo.
𝐼5 1866-2219 1’ 2” 11.77s The two pilots walk across a field.
𝐼6 2220-2523 1’ 14” 10.1s The two pilots are walking across a hill.
𝐼7 2524-4041 1’ 24” 50.57s Static shot of a mountain, where a 2D video is projected onto a wall.
𝐼8 4042-5056 2’ 15” 33.8s Drone footage of a climber, that quickly flys away from the climber.
𝐼9 5057-5327 2’ 49” 9s Stationary shot of lead pilot sitting and talking.
𝐼10 5327-5653 2’ 58” 10.87s Stationary shot of lead pilot getting into the wingsuit.
𝐼11 5654-7754 3’ 8” 70s Two pilots jump at "The Fingers". Camera is attached to lead pilot.
𝐼12 7755-8272 4’ 18” 17.23s Two pilots are talking in a field. Camera is handheld by the lead pilot.
𝐼13 8273-8588 4’ 36” 10.5s Stationary shot of lead pilot sitting and talking.
𝐼14 8589-8772 4’ 46” 6.1s Stationary shot of mountain.
𝐼15 8773-9155 4’ 52” 12.73s 3D computer generated mountain. Camera shows trajectory of jump and moves to specific points.
𝐼16 9156-9218 5’ 5” 2.07s Stationary shot of mountain.
𝐼17 9219-9506 5’ 7” 9.57s Stationary shot inside a moving cable car.
𝐼18 9507-9774 5’ 17” 8.9s Stationary shot of ’Death Star’ mountain
𝐼19 9775-10119 5’ 26” 11.47s Secondary pilot prepares for jump. Camera is attached to helmet.
𝐼20 10120-10858 5’ 37” 24.6s Lead pilot prepares for jump. Camera is attached to body.
𝐼21 10859-11311 6’ 2” 15.07s Lead pilot jumps.
𝐼22 11312-11748 6’ 17” 14.53s Secondary pilot jumps.
𝐼23 11749-11998 6’ 32” 8.3s Stationary shot in the mountain of pilots flying across.
𝐼24 11999-13203 6’ 40” 40.13s Lead pilot exits the mountain and deploys parachute.
𝐼25 13204-14251 7’ 20” 34.9s Stationary shot of field landing.
𝐼26 14252-14740 7’ 55” 16.27s Two pilots are talking after the field landing. Camera is handheld by the lead pilot.
𝐼27 14741-14881 8’ 11” 4.67s Stationary shot of lead pilot sitting and talking.
𝐼28 14882-15858 8’ 16” 32.53s Stationary shot of pilots preparing to jump, while a 2D Video is projected onto a mountain wall

reduced, re-localization is important for cases where Visual SLAMs have difficulty in extracting features (e.g. fast
rotation of camera or abnormally fast movement). The latter can be observed in 𝐼21 with abrupt drops of tracked
landmarks. Optical flow magnitude values are also consistent with the intervals, with higher values in intervals with
movements and peaks caused by scene transitions.

4.2 Experimental Design

This study used a repeated measures design, comparing our design candidate (dynamic-FoV ) with two baselines
(unrestricted-FoV and Fixed-FoV ) in the viewing of the selected 360º video using an HMD. The unrestricted-FoV (u-FoV)
condition corresponds to an FoV of 90º (the maximum FoV for the device used and where no effect is noticeable); the
Fixed-FoV (f-FoV) condition corresponds to an FoV of 40º (the necessary amount to block near mid-peripheral and
far-peripheral vision). The dynamic-FoV (d-FoV) condition corresponds to an FoV between 40º and 90º (calculated
through the peripheral optical flow) only when there is movement (indicated through the automatic classification from
the Visual SLAM). When stationary, dynamic-FoV condition presents an FoV of 90º, similarly to unrestricted-FoV. To
prevent order effects, conditions were counterbalanced in a Latin squares design. To minimize after-exposure symptoms,
sessions were scheduled with at least a day apart, and participants were free to reschedule if they felt symptoms prior
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Fig. 2. Time series of optical flow (top), tracked landmarks in OpenVSLAM (center), and automatic movement classification based
on OpenVSLAM’s tracking (bottom). Colors show the manual classifications of the motion in each time interval (green: stationary;
yellow: slow; orange: fast)

to the session. Throughout the paper, we use the same color scheme for images and tables: unrestricted-FoV in red,
dynamic-FoV in purple, and Fixed-FoV in blue.

4.3 Measures

Prior to the first session, participants were asked to fill a demographic questionnaire with gender, age, and items on
experience with VR and 360º video (rating scale with seven levels, "Never" to "Very often"). Additionally, participants
filled out the Motion Sickness Susceptibility Questionnaire Shortform (MSSQ-Short) [47].

Before and after each session, participants filled out a Pre-exposure and Post-exposure Simulator Sickness Ques-
tionnaire (SSQ), composed of 16 items rated in 4 levels ("None", "Slight", "Moderate" and "Severe"). The difference
between Post and Pre values is used to calculate 4 components: Disorientation (SSQ-D), Nausea (SSQ-N), OculoMotor
(SSQ-O) and Total Severity (SSQ-TS). Through the same items but with a different weight calculation, we also used the
Virtual Reality Sickness Questionnaire (VRSQ), which Kim et al. [59] claim to be more appropriate for experiences in
HMDs. The difference between Post and Pre values is used to calculate 3 items: Disorientation (VRSQ-D), OculoMotor
(VRSQ-O), and Total Severity (VRSQ-TS).

During each session, head direction (quaternions) was captured periodically and saved on the device in a CVS
file. During each session, head direction was polled on average 2641 times or approximately five times per second.
Post-study, head direction data was retrieved and converted into Angles (angle between one recording to the next, in
radians), Axes (Yaw, Pitch, Roll, in radians), and geographic coordinates (Longitude and Latitude, in degrees).
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After each session, participants filled out the Igroup Presence Questionnaire (IPQ) [99], a validated Presence scale
composed of 4 components: Spatial Presence (SP), Involvement (INV), Experienced Realism (ER) and General Presence
(GP).

Following Fernandes et al. [41], we had participants fill out a Visual Questionnaire (VQ), aimed at determining the
effects of visual optimizations on the participant’s experiences. In its first section, participants are asked to identify if a
set of given Visual Statements (VS) occurred using seven level Likert scales ("Did not notice or did not happen" to "Very
obvious"). The following seven VSs were used: VS1 "I saw the virtual environment get smaller or larger"; VS2 "I saw the
virtual environment flicker"; VS3 "I saw the virtual environment get brighter or dimmer"; VS4 "I saw that something in
the virtual environment had changed color"; VS5 "I felt like my field of view was changing in size"; VS6 "I felt like I was
getting bigger or smaller"; VS7 "I saw that something in the virtual environment had changed size". In the second and
third sections, Most Noticed Visual Change (MNVC) and Second Most Noticed Visual Change (SMNVC), participants
are asked to identify a particular noticed VS. If participants identify a VS, follow up Likert scales (all with seven levels)
request them to self-report their confidence ("Not confident" to "Very confident") and to rate the VS in terms of Comfort
("Not comfortable" to "Very comfortable"), Enjoyability ("Less enjoyable" to "More enjoyable") and Desire ("Don’t want"
to "Definitely want").

After each session, in order to gather information on participant’s perception of the 360º video and the effect on any
visual optimization, we conducted a semi-structured interview asking about how the session went and any discomfort
they might have felt, and, if participants mentioned the visual optimization, opening the scope of inquiry to question
about their effect and/or why they happened.

4.4 Experimental Procedure & Setup

Convenience sampling was used for multiple reasons. Firstly, since the experience spanned multiple sessions, over a
period of a week or more, participants needed to be easily accessible. Secondly, and most importantly, the COVID-19
epidemic made it unfeasible to recruit external participants. The study was carried out in a lab in a geographically
isolated region with fewer than 100 total cases at the time, and in accordance with local laws. Following guidelines
for HCI studies [106], lab personnel and infrastructure were used, and participants were not monetarily compensated
for taking part in the study. Furthermore, as suggested by Steed et al. [106], a combination of hygienic measures
(disinfectant wipes, disposable masks, ultraviolet light decontamination, etc.) was used between sessions.

Before the first session, participants were given an informed consent form with the overall goal of the study, but
no information about possible visual optimizations. In the first session, participants were asked to fill a questionnaire
with demographic data, and before viewing the 360º video, were asked to fill a Pre-Session questionnaire. Participants
were able to adjust the HMD and were asked to stand up (so that changes in head movement data reflect postural
sway) before the researcher started the experience with the HMD’s remote controller. A meeting room in our research
laboratory, clear of obstructive furniture, was used for all sessions. A mobile Oculus Go HMD was used and due to
COVID-19 concerns, no headphones were used, relying on the HMD’s audio output. After each session, participants
were asked to fill a Post-Session questionnaire and to participate in a semi-structured interview.

4.5 Sample

Due to the influence of several factors in VIMS susceptibility (e.g. age, gender, previous experience, etc.) and the small
available pool of participants due to COVID-19, we did not assume any inclusion or exclusion criteria for the population,
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other than being able to complete the viewing task. All participants (N = 23, 35% female) completed all sessions in their
entirety. The mean age among participants was 28.3 years (SD = 6.6 years; range = 19-49).

Data analysis was done for the full population as well as for a subpopulation made of participants in the upper 75th
percentile of the MMSQ-short (participants more susceptible to motion sickness). A separate analysis of subpopulations
more prone to motion sickness can also be found in McGill et al. [71]. The mean age among participants in this
subpopulation (N = 15, 33% female) was 29.33 years (SD = 7.6 years; range = 20-49). Additional subpopulations (e.g. only
females) were not considered due to the small sample size (N<12).

4.6 Analysis

Analysis was conducted in R [91], using a 2-tailed testing at 𝛼 of .05 and figures were produced using the ggplot2
package [115]. Testing for Assumption of Normality was done through visual analysis of histograms/boxplots/Q-Q
plots, analysis of Kurtosis and Skewness (and their standard errors), and normality tests (Shapiro-Wilk, given that N<50).
All data (except for presence components) was not normally distributed and thus failed to satisfy the assumptions
required for parametric testing.

Angles (how much the head moves between readings) were accumulated according to the manual classification of
intervals ("stationary", "slow", "fast") and automatic classification from Visual SLAM ("stationary" and "movement").
For these measures, outliers were removed [42] and the resulting missing data imputed via multivariate chained
equations [26, 49]. The resulting data were found to be normally distributed.

Measures in which data were normal were analyzed with one-way repeated measures ANOVAs, while measures in
which data failed normality checks were analyzed with Friedman tests. For ANOVAs, Greenhouse-Geisser corrected
degrees of freedom are reported for cases where sphericity was violated [69]. Post-hoc testing was conducted with t-tests
for parametric data and Friedman’s Aligned Ranks tests for non-parametric data. All post-hoc pairwise comparisons
include Holm-Bonferroni confidence interval adjustments. Unless explicitly stated, all statistical data reported, tables,
and images correspond to the full participant population.

For plots involving map projections, the following packages were used: sf [87], rgdal [16], spdep [15], and mapproj
[72]. For hotspot analysis, we used a Getis-Ord Gi* algorithm, using 2-tailed testing at 𝛼 of .05, consistent with Rothe
and Hußmann [96] and Bala et al. [7].

Interviews were recorded, transcribed, and then analyzed by two researchers using MaxQDA [61, 104]. Through
an iterative process, we thematically analyzed [22] session transcripts, clustered for each condition, by sorting into
categories according to the main topic of the statements. Finally, we clustered themes that were common in the different
conditions and themes that were specific to a particular condition.

5 RESULTS

5.1 Sample

Concerning motion sickness susceptibility for our full population, our population is representative of a general
population since the mean raw MSSQ score of 9.261 (SD = 8.29; range = 0-34) is below the population norm of (SD
= 9.90) [47]. Likewise, the population is inexperienced with VR and 360º video. In terms of items related to previous
experience, most participants (57% and 52%, respectively) reported very seldom experience with VR (mdn = 1, iqr = 1)
and 360º video (mdn = 1, iqr = 0).
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Table 2. Median scores and standard deviations for SSQ and VRSQ components across conditions unrestricted-FoV (u-FoV), dynamic-
FoV (d-FoV), and fixed-FoV (f-FoV), considering the full population (top) and upper 75th percentile subpopulation (bottom). Total
Severity (TS) scores are highlighted in light grey. Kendall’s W effect size uses the Cohen’s interpretation guidelines of small (0.1-0.3),
moderate (0.3-0.5) and strong (>0.5).

Unrestricted-FoV Dynamic-FoV Fixed-FoV Main Effect Effect Size d-FoV vs u-FoV d-FoV vs f-FoV f-FoV vs u-FoV

Fu
ll

SS
Q

TS 14.96 ± 15.37 0 ± 20.35 11.22 ± 10.44 𝜒2 (2) = 9.887, p = 0.007 W = 0.215 p = 0.047 - -
D 13.92 ± 28.44 0 ± 32.49 0 ± 16.6 𝜒2 (2) = 8.13, p = 0.017 W = 0.177 - - p = 0.018
O 7.58 ± 13.05 0 ± 14.08 7.58 ± 10.59 - - - -
N 9.54 ± 11.49 0 ± 16.83 0 ± 13.07 𝜒2 (2) = 8, p = 0.018 W = 0.178 p = 0.046 - -

VR
SQ

TS 7.50 ± 9.44 0 ± 9.31 0.83 ± 5.61 𝜒2 (2) = 11.34, p = 0.003 W = 0.344 p = 0.04 - p = 0.02
D 6.67 ± 10.02 0 ± 8.67 0 ± 5.99 𝜒2 (2) = 15.83, p < 0.001 W = 0.246 p = 0.012 - p = 0.006
O 8.33 ± 10.95 0 ± 10.61 0 ± 7.46 - - - - -

U
pp

er
75
th SS

Q

TS 18.7 ± 17 0 ± 24.32 11.22 ± 10.85 𝜒2 (2) = 10.12, p = 0.05 W = 0.338 p = 0.049 - -
D 27.84 ± 31.04 0 ± 38.9 0 ± 18.87 𝜒2 (2) = 8.391, p = 0.015 W = 0.280 - - p = 0.028
O 7.58 ± 12.96 0 ± 15.55 7.58 ± 10.12 - - - - -
N 9.54 ± 12.32 0 ± 20.23 0 ± 12.39 - - - - -

VR
SQ

TS 10.83 ± 9.91 0 ± 10.54 4.17 ± 5.76 𝜒2 (2) = 13.06, p = 0.001 W = 0.435 - - p = 0.009
D 13.33 ± 9.91 0 ± 10.04 0 ± 6.60 𝜒2 (2)=14.37, p < 0.001 W = 0.479 p = 0.049 - p = 0.006
O 8.33 ± 10.82 0 ± 11.87 8.33 ± 6.90 - - - - -

Table 3. Mean scores and standard error for IPQ components across conditions, considering the full population (top) and upper 75th
subpopulation percentile (bottom)

Unrestricted-FoV Dynamic-FoV Fixed-FoV

Fu
ll

IP
Q

GP 3.78 ± 0.27 3.65 ± 0.30 3.09 ± 0.30
SP 4.14 ± 0.17 3.70 ± 0.23 3.33 ± 0.25
INV 3.11 ± 0.13 3.19 ± 0.16 2.92 ± 0.17
ER 2.73 ± 0.13 2.57 ± 0.16 2.51 ± 0.09

U
pp

er
75
th

IP
Q

GP 3.8 ± 0.34 3.53 ± 0.34 2.93 ± 0.38
SP 4.2 ± 0.25 3.57 ± 0.25 3.12 ± 0.33
INV 3.13 ± 0.16 3.2 ± 0.21 2.75 ± 0.20
ER 2.62 ± 0.17 2.38 ± 0.21 2.45 ± 0.13

5.2 Self-Reported Measures

5.2.1 SSQ & VRSQ. Table 2 includes the median and standard deviation scores for SSQ and VRSQ components, for the
full population and upper 75th percentile subpopulation. All post-hoc pairwise comparisons used a Holm-Bonferroni
correction.

5.2.2 Presence. Table 3 includes the mean and standard error for presence components, for the full population and
upper 75th percentile subpopulation. Considering the full population:

• For GP, Mauchly’s test indicated that the assumption of sphericity had been violated, 𝜒2 (2) = 0.7514, p = 0.05,
therefore degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (𝜖 = 0.8). The
results show statistically significant differences for GP, F(1.6, 35.24) = 4.105, p = 0.023, 𝜂2 = 0.05. Post-hoc paired
comparisons with Holm-Bonferroni correction indicate a significantly higher value for unrestricted-FoV compared
to fixed-FoV (p = 0.044).

• For SP, Mauchly’s test indicated that the assumption of sphericity had been violated, 𝜒2 (2) = 0.643, p = 0.01,
therefore degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (𝜖 = 0.737). The
results show statistically significant differences for SP, F(1.47, 32.42) = 6.723, p = 0.003, 𝜂2 = 0.09. Post-hoc
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Fig. 3. Stacked barplot for Visual Questionnaire (VS1 to VS7), where response 0 is equal to "Did not notice or did not happen" and 6
to "Very obvious"

paired comparisons with Holm-Bonferroni correction indicate a significantly higher values for unrestricted-FoV
compared to fixed-FoV (p = 0.008) and for unrestricted-FoV compared to dynamic-FoV (p = 0.011).

Considering the upper 75th percentile subpopulation:

• For SP, Mauchly’s test indicated that the assumption of sphericity had been violated, 𝜒2 (2) = 0.291, p < 0.001,
therefore degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (𝜖 = 0.585). The
results show statistically significant differences for SP, F(1.17, 16.38) = 7.944, p = 0.002, 𝜂2 = 0.153. Post-hoc paired
comparisons with Holm-Bonferroni correction indicate significantly higher values for unrestricted-FoV compared
to fixed-FoV (p = 0.012) and for unrestricted-FoV compared to dynamic-FoV (p = 0.000168).

5.2.3 Visual Questionnaire. Figure 3 shows the stacked barplots for VS1 to VS7, and participants are in agreement as to
whether they happened across conditions, except for VS1 and VS5:

• For VS1, there was a statistically significant difference, 𝜒2 (2) = 11.1, p < 0.001. Post-hoc pairwise comparisons
using Holm-Bonferroni correction show significantly higher values for dynamic-FoV compared to unrestricted-FoV
(p = 0.005) and for dynamic-FoV compared to fixed-FoV (p = 0.009).
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• For VS5, there was a statistically significant difference, 𝜒2 (2) = 24.03, p < 0.001. Post-hoc pairwise comparisons
using Holm-Bonferroni correction indicated significantly higher values for dynamic-FoV compared to unrestricted-
FoV (p = 0.000259), for dynamic-FoV compared to fixed-FoV (p = 0.002) and for fixed-FoV compared to unrestricted-
FoV (p = 0.008).

5.2.4 MNVC & SMNVC. Based on the previous significance, we look only at VS5 ("I felt like my field of view was
changing in size") in dynamic-FoV and fixed-FoV and VS1 ("I saw the virtual environment get smaller or larger") for
dynamic-FoV.

In dynamic-FoV, most participants (15, out of 21) chose VS5 as the MNVC, and 11 of them with a high degree of
confidence (mdn = 6, iqr = 0.5). For these 15 participants, most reported both comfort (mdn = 3; iqr = 2) and enjoyability
(mdn = 3, iqr = 2.5) around the center of the scale, but responses for future desire was more diverse (mdn = 2, iqr =
3). For VS1, only 2 participants chose it with a high degree of confidence (mdn = 6, iqr = 0) and reported values for
comfort, enjoyability and desire (4,5,5, respectively; iqr = 0) towards the higher level of the scale. As for the SMNVC,
out of 13 people, only 2 participants chose VS5 and values for confidence (mdn = 5, iqr = 1), comfort (mdn = 4, iqr = 1),
enjoyability (mdn = 4, iqr = 1) and desire (mdn = 4, iqr = 1) were centered towards the higher level of the scale. No
participants reported VS1 in SMNVC.

In fixed-FoV, most participants (11, out of 19) chose VS5, and 6 of them with the highest degree of confidence (mdn =
6, iqr = 2). For these 11 participants, most (6 and 3) reported comfort (mdn = 2; iqr = 0.5) and enjoyability (mdn = 3, iqr
= 3) towards the lower level of the scale, but most responses (3) for future desire were centered (mdn = 3, iqr = 2.5).
Although 12 participants reported SMNVC, no participants chose VS5.

5.3 Objective Measures

To understand user behaviour when viewing 360º video, we started bymapping yaw, roll, and pitch values caused by head
movement to time. No visual differences were found between conditions and expected behaviours (e.g. more variation
of yaw due to looking from side-to-side) were consistent across conditions. Longitude and latitude corresponding to
the central axis of head direction were mapped to hotspot maps (see supplementary material for video of hotspots by
condition), using Getis-Ord Gi* at a confidence interval of 95%. Based on this video, we made notes of user behaviour and
possible divergence between conditions. For brevity, we present only some behaviours/observations. During stationary
shots or shots with little movement, participants explored the scene leading to the creation of multiple clusters. During
scenes with translation movement like flying, participants created clusters on the direction of the movement and
respected the shape of the environment. For example, in 𝐼24, when flying through the canyons, a cluster formed on
the canyon direction and in the shape of the canyon opening, but as the pilot left the mountain and space opened up,
participants explored, creating multiple clusters. Scene changes led to exploratory behaviour if a new point of interest
was not present. For example, 𝐼8 to 𝐼10, had points of interest in the same position, so even as the scene changed, clusters
remained, but the transition to 𝐼11 led to participants looking for a new point of interest. Participants were reactive
to audio cues (e.g. 𝐼12 looking to see who was talking) and visual cues (e.g. 𝐼15 looking at the highlighted path). No
discernible differences were found across conditions.

5.3.1 Accumulated Angles. Regarding accumulated angles across the video and intervals classified automatically or
manually, several significant differences were found. Only significant differences are reported and all post-hoc paired
comparisons were adjusted with Holm-Bonferroni correction. Considering the full video:
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• For the full population, F(2,44) = 4.772, p = 0.013, a significant difference (p = 0.024) was found between fixed-FoV
(11974 ± 631.7) and unrestricted-FoV (14332 ± 847.4), but not with dynamic-FoV (13793 ± 910.4).

• For the 75th upper percentile subpopulation, F(2,28) = 3.626, p = 0.05, a significant difference (p = 0.049) was
found between fixed-FoV (12398 ± 835.1) and unrestricted-FoV (13958 ± 859.7), but not with dynamic-FoV (12518
± 1079).

For the full population and considering the automatic classification of movement:

• For when there is camera movement, F(2,44) = 4.364, p = 0.019, a significant difference (p = 0.021) was found
between fixed-FoV (7867 ± 398.9) and unrestricted-FoV (8878 ± 509.3), but not with dynamic-FoV (8288 ± 503.7).

• For when the camera is stationary, F(2,44) = 4.174, p = 0.022, a significant difference (p = 0.05) was found between
fixed-FoV (4653 ± 369.8) and unrestricted-FoV (5453 ± 377.2), but not with dynamic-FoV (5349 ± 272.2).

For the full population and considering the manual classification of movement:

• Joining intervals classified as "fast" or "slow", F(2,44) = 3.984, p = 0.026, a significant difference (p = 0.033) was
found between fixed-FoV (7480 ± 399.5) and unrestricted-FoV (8792 ± 513.5), but not with dynamic-FoV (8265 ±
501.8).

• For intervals classified as "slow", F(2,44) = 4.479, p = 0.017, a significant difference (p = 0.003) was found between
fixed-FoV (2335 ± 170.7) and unrestricted-FoV (2776 ± 172.2), but not with dynamic-FoV (2537 ± 121.3).

• For intervals classified as "stationary", F(2,44) = 4.825, p = 0.013, a significant difference (p = 0.05) was found
between fixed-FoV (4486 ± 278.8) and unrestricted-FoV (5540 ± 375.5), but not with dynamic-FoV (5325 ± 278.8).

For the upper 75th percentile subpopulation and considering the automatic classification of movement:

• For when there is camera movement, F(2,28) = 4.731, p = 0.017, a significant difference (p = 0.021) was found
between fixed-FoV (7600 ± 570.2) and unrestricted-FoV (8874 ± 554.3), but not with dynamic-FoV (7545 ± 650.2).

• For when the camera is stationary, F(2,28) = 4.559, p = 0.019, a significant difference (p = 0.05) was found between
dynamic-FoV (4070 ± 207.1) and unrestricted-FoV (5084 ± 366), but not with fixed-FoV (4643 ± 252.3).

For the upper 75th percentile subpopulation and considering the manual classification of movement:

• Joining intervals classified as "fast" or "slow", F(2,28) = 4.153, p = 0.026, a significant difference (p = 0.03) was
found between fixed-FoV (7557 ± 569.6) and unrestricted-FoV (8769 ± 557.9), but not with dynamic-FoV (7519 ±
651.3).

• For intervals classified as "slow", F(2,28) = 4.479, p = 0.017, a significant difference (p = 0.018) was found between
fixed-FoV (2180 ± 187.1) and unrestricted-FoV (2775 ± 176.6), but not with dynamic-FoV (2483 ± 167.5).

• For intervals classified as "stationary", F(2,28) = 3.326, p = 0.05, a significant difference (p = 0.05) was found
between fixed-FoV (4689 ± 253.4) and unrestricted-FoV (5188 ± 368.8), but not with dynamic-FoV (4435 ± 290.4).

5.3.2 FoV size in dynamic-FoV. To understand how FoV size varied in dynamic-FoV, we looked at mean values and
standard errors for the automatic and manual classification of locomotion. For the automatic classification, when there
was camera movement, the mean FoV size was 64.64 ± 0.6307, increasing to 87.49 ± 0.02536 when stationary. The
mean value is not exactly 90º due to changes in value when transitioning between classifications. For the manual
classification, in intervals classified as "stationary", the mean value was 86.93 ± 0.02239, being consistent with the
automatic classification. However, when comparing intervals classified as "slow" (81.28 ± 0.3638) and "fast" (57.64 ±
0.8187) it is possible to understand that most restriction happens during these "fast" intervals. When joining intervals
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Fig. 4. Mean FoV size for dynamic-FoV across time, using a binning of 2 seconds. Colors show the manual classifications of the motion
in each time interval (Green: "stationary"; yellow: "slow"; orange: "fast")

with "slow" and "fast" movement, the mean value (64.16 ± 0.6402) is similar to the one found for the automatic
classification. Fig. 4 maps mean FoV size to time in dynamic-FoV ; a stricter FoV restriction was clearly applied to "fast"
intervals, while "slow" intervals offer more variation in values.

5.4 Thematic Analysis

Coded segments were grouped into six main themes: Experience (how they felt about the experience), Task (how they
engaged with the story), Content (opinions on the 360º video), Comfort (how they felt during the experience including
physical symptoms reported), Immersion/Presence (elements that broke the immersion of the 360º video), and Perceived
Visual Modifications (visual changes noticed). For brevity, we will not extensively describe them but will synthesize
relevant information on the use of dynamic-FoV and fixed-FoV.

Regarding dynamic-FoV, participants reported mixed opinions (e.g. P1 "I think it was something unnatural. For me,
the objective of using a headset is to see the things around you. Since I don’t feel sick while being able to see everything,
having a black spot covering half of the screen is a bit useless. Then, I found it annoying that it would adjust. It’s adding
more visible movement than what was there before.", P23 "I was conscious of it, that it was happening, that it wasn’t
completely natural, but I don’t feel like it was distracting or made the experience uncomfortable."). Several participants
considered dynamic-FoV to be part of the experience, often referring to it as a focus (e.g. P6 "I think that the part where
the field of view gets reduced makes sense, because when we are going fast, the eye tries to focus. I think that makes
sense.", P2 "I think I was more focused. Since I had more vision, I would focus more on that part. Then, I would move
around, and it would focus where I was looking at.", P12 "It made sense to me when it’s accelerating, because of the
speed, as when a person’s going fast, they’re focusing on the target and don’t give much attention to their peripheral
vision. There it worked well.", P7 "It forced me to focus on the point where there was movement, so I think it helped
during the experience"). However, for some participants the dynamic-FoV caused confusion (e.g. P21 "When it did that,
I felt like taking a step back, when it closed. Or I was trying to move away from that effect, or that I was taking a step
forward and felt unbalanced.") and some did not understand why the effect happened (e.g. P15 thought that the FoV
was being changed by the researcher).

For fixed-FoV, several participants expressed frustration for its existence (e.g. P19 "More than too distracting, I felt
like I was losing a lot of information, by not seeing the surroundings. Also, because, if you have this video in the middle
of beautiful mountains, and you just can see one tiny bit.", P4 "I interacted less this time, and still felt sick.", P7 "This one
was always closed, it was like looking at a TV screen, I didn’t feel as present."). Some participants counteracted the fear
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of missing out by moving more (e.g. P1 "I couldn’t read everything that was on screen. For example, for the name of
the documentary, in the beginning, I had to move my head from one side to the other to be able to read it."). It is also
relevant to point out that several participants reported eye discomfort (e.g. P19 "I noticed there is a bigger difference in
brightness, and maybe that is why my eyes feel weird when I take off the VR headset", P13 "I felt my eyes blinking
more.").

For unrestricted-FoV, several participants reported using the wider FoV to explore the scene (e.g. P22 "In the others,
since the field of view was smaller, it was good to focus on that determinate thing, but here, since it didn’t have that,
there was more freedom to look around."). However, they also reported discomfort, specifically in scenes with fast
movement (e.g. P18 "I felt uncomfortable when they were going down the canyon because the objects moved really fast
and they seemed really close to me.", P16 "There were some moments when going through the narrow canyons, for
example, I noticed the feeling of vertigo a bit more.").

6 DISCUSSION

Our study demonstrated the efficacy of the dynamic-FoV in the mitigation of VIMS symptoms. Dynamic-FoV was shown
to be statistically effective in reducing/maintaining scores of SSQ-TS, SSQ-N, VRSQ-TS, and VRSQ-D when compared to
unrestricted-FoV, for both the full population and upper 75th percentile subpopulation. Likewise, fixed-FoV was shown to
be statistically effective in reducing/maintaining scores of SSQ-D, VRSQ-TS and VRSQ-D compared to unrestricted-FoV,
for the full population and upper 75th percentile subpopulation. No differences were found between dynamic-FoV and
fixed-FoV ; this is expected as the FoV size of dynamic-FoV during "fast" intervals (see Fig. 4) is close to the FoV size of
fixed-FoV (40º), therefore blocking peripheral optical flow more prevalent in those intervals (see Fig. 2). The behaviour
of participants for "fast" intervals in dynamic-FoV, fixed-FoV and unrestricted-FoV is similar, as based on the cluster
formation in heatmaps and no significant differences in the amount of movement (whereas all other intervals were
significant). Therefore, participants experiencing unrestricted-FoV were likely to be affected by high values of peripheral
optical flow. This is also confirmed by P18 and P16 statements on discomfort in unrestricted-FoV. Finally, its also worthy
of note that participants for fixed-FoV reported oculomotor symptoms, as well as in the semi-structured interviews
reporting eye discomfort (e.g. P19, P13); although we cannot conclude a cause, we posit that the severe FoV restriction
for a long period of time might cause eye fixation leading to eye strain. The severity of simulator sickness symptoms
typically increases with time [37]. For example, Min et al. [74] prompted users operating a driving simulator with
an oral SSQ at 5-minute intervals; participants reported nausea and disorientation after 10 minutes and oculomotor
symptoms after 25 minutes. Due to a lack of availability of longer 360º videos [32, 79], we exposed users to relatively
short stimuli of 8’49” minutes (less than the reported mean of 10 minutes [98]). The low SSQ-TS and SSQ-O scores
we observed are consistent with this reduced exposure time and higher values may result from longer exposures. Our
current results should be interpreted with this caveat in mind and future work should explore the use of a longer
exposure time. We believe this would be particularly valuable as it may exacerbate the differences between conditions.

Considering presence items, as expected, participants experiencing unrestricted-FoV reported higher values for
general presence and spatial presence compared to fixed-FoV. This relationship is expected, since more severe FoV
restriction has been shown to reduce the sense of presence [3, 41]. Based on the statistically significant differences in
accumulated angles over several types of locomotion, we conclude that participants in fixed-FoV moved their head less
than in unrestricted-FoV, which may explain the reduced spatial presence values for fixed-FoV. However, we note that
in the semi-structured interviews, some participants reported trying to use motions to mitigate the limitations of the
fixed-FoV (e.g. P1 moving their head to read the video title).
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Although presence items were not significantly different for dynamic-FoV, mean scores were higher than for fixed-FoV,
and involvement was higher than for unrestricted-FoV as well. This supports further development of our dynamic-FoV.
FoV restriction is a noticeable effect, as seen by Fig. 3 and by the statistical significance for VS1 and VS5. First off,
the quantity of visual statements is intended to identify the most noticeable changes (by introducing statements that
exist regardless of the condition) but the wording is subjective to users; for example, some users identified the FoV
restriction as part of "virtual environment" in VS1, which leads to differences between VS1 and VS5. Being noticeable is
not necessarily bad, as participants in the MNVC and SMNVC reported these statement’s enjoyability and comfort
towards the central or higher levels of the scale. However, their desire for its future inclusion is more diverse in their
responses. Looking at semi-structured interviews can help clarify this disagreement. For some participants (e.g. P2, P6,
P7, P12), the dynamic-FoV was considered as part of the experience or as an attention guidance mechanism, especially
in intervals with "fast" movement. Unintentionally, dynamic-FoV can work as attention guidance since the point of
interest in a scene is many times something that causes optical flow. For example, when the secondary pilot jumps in 𝐼22,
the point of interest is the lead pilot, an element that causes more optical flow through its movement, than looking at
the faraway trees. FoV restriction when transitioning to a "fast" interval can also seem like it is intentional. For example,
when the pilots are preparing to jump, there is little optical flow noise and subsequently a small FoV restriction; as
they jump and transition to the "fast" interval, the FoV restriction is increased to its minimum value of 40º, making it
seem like it was intentionally introduced by the video. For other participants, the dynamic-FoV was seen as something
that was distracting and not helpful, as stated by P1 "It’s adding more visible movement than what was there before".
Contemplating on Fig. 4, we posit that in "slow" intervals, changes to FoV size might introduce optical flow due to the
contraction of the FoV restriction, making it more noticeable for users. Current results should be interpreted having in
mind the FoV size limits used. While our inner FoV diameter of 40º is smaller than Fernandes and Feiner’s 50º [41], it is
of note that our restriction of dynamic-FoV is mostly applied to “fast” intervals (from the comparison of mean FoV
sizes and Fig. 4) and that in those intervals the mean FoV size (57.64º) is higher than 40º. Since stricter FoV restrictions
can affect both SSQ and presence scores [3, 41], future studies should investigate and adjust the minimum FoV size
accordingly, with the goal of maximizing presence and minimizing symptoms.

6.1 Implications for Design, Limitations and Future Work

Aligning peripheral optical flow with motion classification for dynamic-FoV has shown to be effective in mitigating
VIMS, while maintaining presence. Although noticeable, dynamic-FoV was well accepted by participants, allowing for
exploration of "stationary" and "slow" scenes, and protecting the user from optical flow during "fast" scenes. While
some participants enjoyed the dynamic-FoV considering it to be intentional, some participants found it to be distracting
due to instability in FoV size. Previous work [18] has suggested that vection change like the one caused by the FoV
expanding and contracting alternately can lead to exacerbated symptoms. While we try to reduce this instability by
polling optical flow ahead of time and smooth dampening the size of FoV, these attempts are not fruitful in "slow"
intervals. The crux of the issue, in this case, is when should you protect the user: a fast response to optical flow stimuli
can cause FoV instability if the optical flow stimuli is not maintained; a slow response to optical flow stimuli can expose
the user to the stimuli for far longer than needed.

A possible solution using motion classification involves having automatic classification between "slow" scenes
with small rotational or translational movement and "fast" scenes with considerable translational movement. This
classification would allow for restricted FoV to be applied only in "fast" scenes, to customize parameters like the time of
response to the type of scene, or to customize VIMS mitigation strategies to the type of scene (e.g. using a less obtrusive
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strategy in "slow" scenes). Future work on velocity estimation or simultaneous localization using OpenVSLAM could
introduce a plethora of opportunities to augment 360º video. While this is not yet possible for videos with multiple
scenes due to inconsistencies in measures, single-shot videos can be used. For example, based on the precomputed
locomotion direction of a single-shot video, we could guide attention towards the direction of movement prior to it
happening.

Regarding limitations of our work, while we present a study with only one video, the diversity of scenes it includes
(different speeds, different camera placements, computer-generated scenes, scenes with special effects, etc.) are positive
for the generalization of our dynamic-FoV pipeline for other videos. Future studies should focus on the validation of the
pipeline in different types of videos in order to determine the video characteristics that are most suitable for dynamic
FoV manipulation. Furthermore, our dynamic-FoV pipeline is only responsive to the optical flow of the content and
ignores optical flow created by the user from translation and rotation. Future implementations of our pipeline would
benefit from incorporating user behaviour data, such as head dispersion as reported by Lim et al [63]. Our results
are usable by other researchers and highlight the importance of a mixed-methods approach (using self-reported data,
objective measures, and semi-structured interviews) to analyze a complex topic such as VIMS.

7 CONCLUSION

In this paper, we presented a novel strategy for VIMS reduction in 360º video using peripheral optical flow and movement
classification from Visual SLAM, both unexplored in the context of 360º video, to dynamically restrict FoV, blocking the
peripheral optical flow that exacerbates VIMS symptoms. We evaluated our technique through a within-subjects study
(N=23) comparing our design candidate (dynamic-FoV ) to two baselines (unrestricted-FoV and fixed-FoV ). Our findings
show the effectiveness of dynamic-FoV in mitigating VIMS, while maintaining presence. Future work for generalizing
our system is promising, and could help make VR accessible for all.
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Table 4. Full list of abbreviations, acronyms and initialisms

Abbreviation Original
CSV Comma Separated Values
d-FoV dynamic-FoV
ER Experienced Realism
f-FoV fixed-FoV
FoV Field of View
GP General Presence
HMD Head Mounted Display
I[1-28] Interval 1 to 28
INV Involvement
IPQ Igroup Presence Questionnaire
MNVC Most Noticed Visual Change
P[1-23] Participant 1 to 23
POI Point of Interest
SLAM Simultaneous Localization and Mapping
SMNVC Second Most Noticed Visual Change
SP Spatial Presence
SSQ Simulator Sickness Questionnaire
SSQ-D Disorientation
SSQ-N Nausea
SSQ-O OculoMotor
SSQ-TS Total Severity
u-FoV unrestricted-FoV
VIMS Visually Induced Motion Sickness
VO Visual Odometry
VQ Visual Questionnaire
VR Virtual Reality
VRSQ Virtual Reality Sickness Questionnaire
VRSQ-D Disorientation
VRSQ-O OculoMotor
VRSQ-TS Total Severity
VS Visual Statement
VS1 "I saw the virtual environment get smaller or larger"
VS2 "I saw the virtual environment flicker"
VS3 "I saw the virtual environment get brighter or dimmer"
VS4 "I saw that something in the virtual environment had changed color"
VS5 "I felt like my field of view was changing in size"
VS6 "I felt like I was getting bigger or smaller"
VS7 "I saw that something in the virtual environment had changed size"
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Fig. 5. Mean scores and standard errors for the full population (left) and upper 75th percentile subpopulation (right)

Table 5. Mean scores and standard errors for SSQ and VRSQ components across conditions unrestricted-FoV (u-FoV), dynamic-FoV (d-
FoV), and fixed-FoV (f-FoV), considering the full population (top) and upper 75th percentile subpopulation (bottom). Total Severity (TS)
scores are highlighted in light grey

Unrestricted-FoV Dynamic-FoV Fixed-FoV

Fu
ll

SS
Q

TS 16.75 ± 3.21 9.76 ± 4.24 9.76 ± 2.18
D 26.63 ± 5.93 15.13 ± 6.77 11.5 ± 3.46
O 10.22 ± 2.72 5.93 ± 2.94 7.25 ± 2.21
N 11.61 ± 2.40 7.05 ± 3.51 7.88 ± 2.73

VR
SQ

TS 9.38 ± 1.97 4.53 ± 1.94 3.95 ± 1.17
D 10.44 ± 2.09 4.35 ± 1.81 3.19 ± 1.25
O 8.33 ± 2.28 4.71 ± 2.21 4.71 ± 1.56

U
pp

er
75
th SS

Q

TS 21.19 ± 4.39 13.21 ± 6.28 9.48 ± 2.8
D 33.41 ± 8.01 18.56 ± 10.04 12.06 ± 4.87
O 14.65 ± 3.35 9.60 ± 4.016 8.09 ± 2.61
N 12.72 ± 3.18 8.90 ± 5.22 5.72 ± 3.20

VR
SQ

TS 12.28 ± 2.56 6.22 ± 2.72 4.28 ± 1.49
D 12.89 ± 2.56 5.78 ± 2.59 3.56 ± 1.71
O 11.67 ± 2.79 6.67 ± 3.07 5 ± 1.78
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Fig. 6. Boxplots for SSQ and VRSQ components for the full population (left) and upper 75th percentile subpopulation (right)
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