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ABSTRACT
Gestures drawn on touchscreens have been proposed as an authen-
tication method to secure access to smartphones. They provide
good usability and a theoretically large password space. However,
recent work has demonstrated that users tend to select simple or
similar gestures as their passwords, rendering them susceptible
to dictionary based guessing attacks. To improve their security,
this paper describes a novel gesture password strength meter that
interactively provides security assessments and improvement sug-
gestions based on a scoring algorithm that combines a probabilistic
model, a gesture dictionary, and a set of novel stroke heuristics.
We evaluate this system in both online and offline settings and
show it supports creation of gestures that are significantly more
resistant to guessing attacks (by up to 67%) while also maintaining
performance on usability metrics such as recall success rate and
time. We conclude that gesture password strength meters can help
users select more secure gesture passwords.

CCS CONCEPTS
• Security and privacy → Graphical / visual passwords; •
Human-centered computing→ HCI design and evaluation meth-
ods.
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1 INTRODUCTION
Mobile smart devices are unlocked asmany as 200 times per day [54].
To achieve this, many users rely on explicit authentication tech-
niques such as PIN [40] or pattern [56]. To minimize the time and
maximize the accuracy of their frequent unlock attempts, users
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commonly select passcodes that are simple to enter [56] and easy to
remember [31]. However, such passcodes are also easy to guess [42]
via techniques such as constructing a dictionary of commonly se-
lected codes [8] or generating passcode predictions from a proba-
bilistic model [39]. The consequences of such breaches can be high:
a malicious user who gains access to a user’s smart device can also
likely access a wide range of private information, accounts and
services [17]. To address this problem, researchers have proposed
alternative unlock schemes. One scheme that is particularly well-
suited to input on smart devices is that of gesture passwords [64].
These take the form of a series of freely composed strokes produced
by a finger or thumb sketching directly on the touch screen on a
device. Researchers have suggested gesture passwords offer a range
of advantages over PIN and pattern: they provide a substantially
larger theoretical space of possible passcodes (up to 27.72 bits [50])
and may reduce the amount of visual attention required during
authentication [43], an attractive feature for mobile usage scenarios.
In addition they require little extra time and effort to enter [64].

Despite these potential benefits, recent studies of gesture pass-
words have highlighted underlying issues. Specifically, as with other
explicit knowledge based authentication schemes, a significant pro-
portion of user gestures can be guessed in both online [14] and
offline attack scenarios [36]. These results suggest that, while the
total number of unique gesture passwords that can be generated is
extremely large, in practice many users select passcodes from a com-
mon, easy-to-remember and easy-to-guess subset of this space, just
as they do with other knowledge based authentication techniques.
To address this problem, researchers have begun to explore how
existing policies and techniques for helping users select secure and
unique PINs [31], patterns [15] or passwords [60] can be adapted to
gesture password systems. For example, Cheon et al. [14] recently
proposed the use of blacklists of commonly selected gestures and
showed this could increase resistance to online guessing attacks,
while Clark et al.[16] explored the use of composition policies—
such as explicit instructions to stroke rapidly or randomly—and
suggest these successfully prompted users to create more diverse
gestures. Similarly, in the related area of graphical passwords based
on selecting a series of points or strokes on a pre-defined image,
Raptis et al. [45] showed how gamification of this process, in the
form of providing a points-based scoring system that rewarded
more random selections, could increase the diversity of passwords
users chose.

Based on this literature, we argue that password composition
policies will be essential to guide users toward secure gesture pass-
word selections and fully realize the potential of the technique. How-
ever, the design of such tools and systems is not trivial—existing
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approaches tend to be highly specific to the passcode modalities
they are based on. For example, common policies for PINs involve
barring repeated or sequential digits [31], for passwords mandate
use of different character types [49] and for patterns require system-
defined start points [15] to alleviate bias in initial target selections.
While these techniques are established and well-proven, none can
be directly applied to free-form gesture passwords that involve nei-
ther explicit symbols nor fixed input locations—gesture passwords
are typically preproccessed in order to be both scale and position
invariant [36] in order to cater to variations in self-reproduction
of gestures and reduce false rejection rates. As such, we identify a
need for further research to adapt, develop and evaluate password
creation tools and techniques that are specific to gesture password
systems.

This paper explores the design of one such tool: a gesture pass-
word strength meter. Password meters [59] are a frequently de-
ployed [18] and well studied technique for improving the quality
of passwords users generate. They work by evaluating the secu-
rity of a user’s password and providing feedback such as strength
ratings [22] or recommendations [58] to increase security. They
typically operate via sets of heuristics about the likely strength of
passwords in terms of properties such as password length (longer
being associated with increased security) and the number of differ-
ent character types used (e.g., upper and lower case, numbers, etc.).
In addition, they can integrate formal calculations of guessability,
in the form of data-driven predictions of the probability of selecting
a given password [12]. Finally, they typically provide feedback to
users in the form of both overall gauges or strength meters [59]
and in terms of customized, reactive recommendations and advice.
These meters can be highly effective: in a large scale study of more
than 4500 participants, Ur et al. [58] showed that a combination
of heuristics, probabilistic analysis and detailed feedback about
both overall security level and specific weaknesses and potential
improvements, led to users generating passwords with a substantial
and significantly reduced guessability [41]. However, while this
literature compellingly illustrates the benefits of password strength
meters, we know of no prior work exploring the design of such
systems for gesture passwords.

We aim to address this omission and design, develop and evalu-
ate a gesture password strength meter. To achieve this, we conduct
an online study to collect 1000 gesture password samples. We ap-
ply state-of-the-art gesture password cracking algorithms for both
online (dictionary based guessing) and offline (n-gramMarkov prob-
ability) attacks to create an initial password strength assessment
tool. We augment this by exploring how a wide range of gesture
features and qualities influence measured strength, ultimately se-
lecting a subset of the most impactful for integration in a final
meter design: gesture curvature, gesture symmetry, and the use
of multiple (or compound) elements. Our final meter integrates
these assessments into a visually displayed strength bar, as textual
descriptions of potential areas for improvement (e.g., a recommen-
dation to use non-symmetrical forms) and as visually presented
distortions of a user entered gesture password candidate (e.g., a
version with reduced symmetry based on rotating a subset of the
original strokes) that illustrate and exemplify how an existing user
gesture could be modified to improve its security. An online study
of this system (N=600) indicates that it can increase resistance to

guessing attacks by 67% compared to a baseline and that, while
setup times are prolonged, it exacts only modest costs in usability
during short-term recall—equivalent recall rates and median recall
times of 3.8s, elevated by a median of just 1.38s over baseline. We
further evaluate the usability impacts of the meter by conducting a
small-scale multi-session study that indicates that use of the meter
did not significantly impact recall rates or recall times over periods
of up to one week. In addition, data from quantitative usability
and workload measures suggest our meter requires only modest
additional effort, and a summary of user comments suggests partici-
pants appreciated its abilities to increase the security of the gesture
passwords they generated. Overall, the contributions of this work
are the design and development of the first password strength me-
ter for gestures and the presentation of a thorough evaluation of
its performance that documents the substantial security benefits
and various usability costs associated with its use. We believe the
development of policies and tools to increase the security of gesture
passwords will be essential to popularizing this promising tech-
nique towards real world deployment. This paper makes firm steps
towards that goal.

2 RELATEDWORK
2.1 Gesture passwords
2.1.1 Gestures for Authentication. As advances in touchscreen de-
vices have enabled high-resolution input over large areas, gesture
passwords have been proposed as a new approach to secure pri-
vate information. Early work in this area explored authentication
with predefined gestures. The underlying idea was that user per-
formance of specific gestures would vary sufficiently (and reliably)
to accurately distinguish between users. This work predominantly
explored the types and forms of gestures (e.g., multi-touch) that
could lead to robust performance in this task [46] or emphasized
usability by seeking to extract features from the simplest possible
single strokes [19]. More recently, Sherman et al. [50] proposed
the use of multiple stroke free-form gestures as a memorable and
secure input method and explored their use in a lab study. In this
model, users select or create unique gestures as their passwords.
This idea has attracted considerable interest, and recent work has
examined more diverse use scenarios, such as creating gestures
for smartphone unlock [14] or creating and recalling gestures over
multiple days and for different accounts [64]. In general, this body
of work is motivated by the idea that gestures on touchscreens
combine a theoretically large password space with a high level of
usability: gestures are easy to remember, and entering them is both
rapid and accurate. These motivations also inspire the work we
report in this paper.

2.1.2 Gesture Recognition Systems. Matching a submitted gesture
password against a stored gesture template to achieve user authen-
tication is a more technically challenging process than the simple
symbolic matching process used for technologies such as PIN and
text password. Gesture passwords need be matched based on stroke
similarity measures such as Dynamic TimeWarping (DTW) [19, 46]
or inverse cosine distance [35]. While both can be effective at as-
sessing similarity in large sets of gesture passwords [14], DTW, in
general, achieves better performance [14, 37]. While diverse other
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recognizers have been proposed and discussed [37], adopting novel
technical approaches impedes comparisons with prior studies. As
such, the work in this paper implements gesture matching using
the established distance metric of DTW.

2.1.3 Gesture Usability and Security. Researchers have analyzed
both usability and security to determine the effectiveness of gesture
passwords. Sherman et al. [50] examined the security and memo-
rability of free-form multi-touch gestures, ultimately presenting
a series of guidelines and observations. More concretely, Yang et
al. [64] examine the usability and memorability of user-chosen ges-
ture passwords after one hour, one day, and one week on multiple
user accounts. Their results indicate that gesture passwords out-
perform traditional text passwords in terms of the key usability
metrics of creation time (by 42%) and entry time (by 22%) while
remaining highly memorable.

Security results are more mixed. Early work shows strong ben-
efits. For example, Sahami et al. [47] perform shoulder-surfing
attacks in which a malicious observer attacks a user’s in-air gesture
password, an experiment that resulted in no successful attacks. Sim-
ilarly, Liu et al. [37] perform an automated brute-force attack using
algorithmically generated gesture passwords that failed to crack
gestures matched via DTW (and a variety of other distance metrics).
More recent work casts doubts on these initial results. In particular,
work on gesture dictionaries is proving particularly effective. For
example, Liu et al. [36] describe an offline dictionary based guessing
attack that cracks between 47.71% and 55.9% of gesture passwords
with 109 guesses [36]. Similarly, Cheon et al. [14] study the effec-
tiveness of using dictionaries to crack gesture passwords in an
online attack scenario. They report that 54.18% to 58.37% of a large
gesture password data set can be successfully guessed using dictio-
naries composed of representative and frequently selected gestures.
These results suggest that, despite their potentially high levels of
both usability and security, gesture passwords suffer from the same
tendencies as other knowledge based authentication credentials.
In order to facilitate memorability and ease entry processes, users
choose gesture passwords that are easy to guess. The work in this
paper seeks to address this emerging issue and explore how users
can be supported in creating gesture passwords that are harder to
guess.

2.2 Password Heuristics
Heuristics are valuable evaluation [49, 63] and feedback tools [24,
58] for diverse password modalities. The effectiveness of using
simple rules-of-thumb about password length, the number of non-
overlapping symbols and the use of different character sets has
been repeatedly and robustly demonstrated [33]. For PIN, for ex-
ample, Kim and Huh [31] evaluate the impact of composition rules
such as restricting use of consecutive digits or mandating various
PIN lengths on security. Similarly, a recent study by Ur et al. [58]
examines multiple heuristics and combines these into a single score
to create an overall metric for the strength of a password. In terms
of pattern locks, Aviv and Fichter [4] explore users’ preferences
across six rules and determine pattern length to be the strongest
indicator of pattern strength. In contrast, we know of no work
looking at heuristics for gesture security. However, we note that
such rules-of-thumb have been used to analyze gestures in other

contexts, such as to support stroke based user interfaces [34]. We
believe that using heuristics to evaluate the security of gesture
passwords is a promising approach that can improve their security
and present the first work to examine this issue.

2.3 Password Strength Meters
2.3.1 Password Composition Policies. Password composition poli-
cies are an important tool to help users avoid creating guessable
passwords [62]. However, it is important to note that extremely
stringent policies may provide additional burdens to users [49].
The trend has been observed in diverse password schemes. Koman-
duri et al. [32], for example, suggest that security improvements
enabled by password policies are often correlated with decreases
in usability. For example, although users can create hard-to-guess
PINs under a stringent 6-digit composition policy, they find these
PINs relatively difficult to remember compared to those created
under less stringent policies [31]. Another example is that while
system suggested random patterns show high entropy, key usability
metrics such as recall success rate are reduced [15]. These effects
can also occur when only ambiguous security benefits are achieved.
Clark et al. [16], for example, propose policies that request users to
create gesture passwords from strokes that are fast, random or use
multiple fingers. Evaluations show unclear security improvements
and negative effects on usability. More positively, a recent study
on gesture passwords suggests improved security can be achieved
by restricting users from selecting common gesture passwords, al-
though this comes at the cost of reduced recall success rates [14].
We identify a need to carefully design policies, such as Cho et al.’s
mandated pattern start points [15], in order to balance improve-
ments in security against any costs to usability. This paper presents
work to explore this design space for gesture passwords.

2.3.2 Strength estimation. Password strength meters are a widely
used technique that assess the strength of candidate user gener-
ated passwords and provide informative aids to help users improve
their selections. Ur et al. [59] examine various meter designs and
conclude users choose longer passwords when a meter is presented
compared to a systemwithout such feedback. Egelman et al. [22] em-
phasize the effectiveness of password strength meters when users
are asked to create passwords for important accounts. A key quality
of passwords meters is that they accurately measure the strength of
entered passwords [18]. This is a challenging task: numerous stud-
ies suggest that simple estimation techniques lead to poor quality
assessments of password strength [12, 18, 62]. To improve matters,
recent work by Ur et al. [58] uses an artificial neural network to
score passwords on multiple heuristics and shows improved per-
formance. Additionally, tools such as n-gram Markov models [12]
and Probabilistic Context-Free Grammars (PCGF) [29, 39, 61] show
excellent performance in estimating text password strength. Such
techniques have also been shown to be effective tools for assessing
the strength of graphical password systems, such as the Picture
Gesture Authentication scheme introduced in Microsoft Windows
8 and studied by Zhao et al. [65]. In this system, which is based on
users drawing one of three gestures (point, line or circle) over a pre-
selected background image, probabilistic password guessing models
were able to guess up to 48.8% of user generated passwords. Multi-
ple techniques can also be combined: Galbally et al. [26] introduce
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multimodal approaches to effectively score passwords. Similarly,
Song et al. evaluate pattern password security by combining three
different measures [53]. While work on assessing the security of
passwords is substantial, we note there is very limited work in this
area on gesture passwords, an omission this paper seeks to address.

2.3.3 Password Meter Feedback. Password meters traditionally
present a visual score bar or rating. Textual recommendations are
also important and prior work has reported on the positive impact
of deploying these types of feedback together [59]. The quality of
the displayed contents also matters. Furnell et al. [25] varied the
level of feedback in a text password strength meter and empirically
determined that more detailed feedback led to users generating
passwords that were significantly more secure. Similarly, a recent
study by Ur et al. [58] suggests that feedback systems that provide
detailed, rule-based and actionable feedback to users are more ef-
fective. The work in this paper seeks to apply these perspectives
to the design of feedback in a gesture password meter and provide
users with specific, concrete recommendations for how to improve
the security of the gesture passwords they generate.

3 GESTURE PASSWORD METER DESIGN
We followed a data-driven approach in order to develop an effec-
tive password strength meter. We first identified the threat model
it seeks to protect users against. After establishing this, we con-
ducted a large-scale online gesture password collection study and
applied state of the art techniques to assess the security of this
user-created gesture password set: the probability calculated via
an n-gram Markov model and a clustering based dictionary match
score. We then evaluated the gesture set in terms of a wide variety
of gesture properties (e.g., curvature, symmetry). For each property,
we split the gestures into two subsets and calculated the subset crack
rates. We used these results to select stroke properties associated
with more secure gesture passwords. We then designed a gesture
strength meter which visually indicates the strength of gesture
passwords and feedback that assists users in designing more secure
gestures with both textual and graphical recommendations relating
to the potentially problematic gesture properties we identified.

3.1 Threat model
The threat model in this work focuses on device lock. We assume
an online guessing attack scenario [14, 15] in which attackers have
gained access to a users’ device, but do not have their lock code or
any other personal information. Attackers also have a limited num-
ber of chances to unlock the device (e.g., the 20 attempts allowed
with Android pattern lock [3, 51]). Reflecting these constraints,
an attacker’s goal is to guess a genuine user’s gesture password
within 20 attempts by sequentially submitting the set of the most
commonly selected gesture passwords. In order to make reasonable
guesses, we assume the attacker has access to a relevant leaked
gesture password data set that can be used to identify the most
common gesture passwords.

3.2 Large Scale Gesture Password Study
We conducted a large scale online data collection study (𝑛 = 1000).
We consider a mobile device usage context where users create and
recall gesture passwords in order to lock and unlock their phones.

Reflecting this scenario, gesture input was constrained to single one-
finger strokes on a small screen region similar to that used when
entering a pattern. The ethical aspects of the study were approved
by our university’s institutional review board (IRB). Additionally,
during online recruitment, participants were made aware that we
were collecting gesture passwords in order to conduct research on
their security.

3.2.1 Study design. The study was implemented as a mobile-only
website. We selected DTW as a distance metric to match gestures
as it has been recommended by prior authors [37] and followed
prior work [14] in using a permissive distance threshold (a DTW
distance of 18.52) that would offer a very low false rejection rate in
order to capture a wide range of valid user gestures. One thousand
study participants were recruited from Amazon Mechanical Turk
(MTurk). After signing up for the study on MTurk, participants
entered a link or scanned a QR code on their phones to access the
study site. They then read instructions and were asked to provide
informed consent. They were informed no identifiable information
would be collected and that they were free to terminate the study at
any time. They were also provided with contact details they could
use if they had questions or concerns. Participants who opted to
continue then completed basic demographics and the study began.

It followed the following steps. First, participants were asked
to create and then confirm (re-enter) a gesture password on their
phone. Instructions emphasized the need to create a secure and
memorable gesture and, in order to reduce the likelihood that par-
ticipants would simply reuse their existing credentials (e.g., the
patterns used to unlock their phones), we emphasized that the
entered gestures would be logged and analyzed in detail by the
research team. If a participant’s confirm gesture did not match
their creation gesture, they were required to restart the creation
process. They were also able to cancel and restart the creation pro-
cess at any time by clicking a button. After successfully confirming
a gesture password, participants practiced their selected gesture ten
times. They then completed a simple tile matching memory game,
an activity designed to provide distraction and ensure gesture pass-
words were not being simply being retained in working memory.
The game featured six pairs of differently colored tiles arranged in
a three by four grid on the phone screen. All tiles were by default
upside down, with their colors hidden. Touching one tile flipped it
to reveal its color; touching a second did the same and also matched
the two flipped tiles against one another. If the tiles had matched
colors, they remained flipped, otherwise, they turned back upside
down. By remembering the locations of previously flipped tiles,
participants could successfully match all six pairs and complete
the game. The mean completion time for this game was 38s (SD:
25.81s) a figure similar to the 30 second distraction task used in
a prior study of graphical passwords [23]. The final stage of the
study involved participants recalling their gesture password one
final time within a maximum of five attempts to do so. The study
took a median of 115 seconds to complete and participants were
compensated with 0.75 USD, corresponding to an median hourly
rate of 23 USD.

3.2.2 Participants. Themajority of participants reported they were
white (45%), Asian (37.1%), Hispanic (6.9%) or black / African Amer-
ican (6.7%). They were aged between 18-24 (17.3%), 25-34 (49%),
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Table 1: Usability data from large scale gesture password study in terms of means (𝜇), standard deviations (𝜎) and medians (𝜇).

Setup Cancels (#) Match Failures (#) Setup Time (s) Recall Time (s) Recall Attempts (#)
𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇

0.32 1.09 0.00 0.17 0.65 0.00 24.97 20.89 18.27 3.68 4.86 2.47 0.15 0.75 0.00

35-44 (23.3%) and 45 or older (10.4%). Education levels were pre-
dominantly college (57%), post-graduate (22.9%) or high school
(19.1%). Participants worked in highly diverse fields including com-
puters and mathematics (13.2%), business and financial (10%) and
management (8.8%).

3.2.3 Usability Metrics. We logged usability data from both setup
and recall phases. In setup, we recorded the number of intentional
setup cancels, the number of match failures between setup and
confirm gestures and, the setup time, the overall time to create a
gesture, including successfully confirming it. We note data from the
setup measures closely follow results reported in prior work [14].
Specifically, setup cancels and match failures are infrequent, and
the median setup time observed in this study was 18.27s, a figure
broadly comparable to the 17.26s that has been previously reported.
During recall, we logged the recall rate, or proportion of partici-
pants who successfully entered their gesture password within five
attempts: 98%. This figure again closely matches prior studies (be-
tween 98% [14] and 98.9% [64]). In addition, we logged the number
of recall attempts required to achieve a successful match, and the
recall time, the total time taken for this process. The median recall
time of 2.47s was again broadly similar to the 2.13s observed in
prior work [14]. The full set of usability data is shown Table 1.

3.2.4 Security Metrics. We characterized the False Rejection Rate
(FRR), or the proportion of genuine authentication attempts that
are inappropriately rejected, by matching each participant’s setup
gesture against their confirm and recall gestures against a wide
range of DTW threshold values. We then characterized the False
Acceptance Rate (FAR), or the number of imposter authentication
attempts that are inappropriately accepted, by matching each par-
ticipant’s setup gesture against the setup gestures generated by
all other participants. The Equal Error Rate (EER), was then deter-
mined as the threshold value at which FRR and FAR are equal: 2.99%
at a DTW distance threshold of 16.7 for our data. These figures
are closely aligned with those in prior work (e.g., 2.28% EER at a
DTW distance threshold of 16.24 [14]) suggesting our data set is
representative of prior examples that appear in the literature.

3.3 Stroke Features
Comprehensible heuristics that are easy to assess, such as the use
of multiple character types (e.g., lower and upper case), are widely
deployed in password strength meters to both measure the strength
of user chosen passwords [49] and to provide strategic feedback
that may improve password selection [58]. In order to apply these
same techniques to gesture passwords, we first need to understand
which stroke features are associated with stronger passwords. To
do this, we defined the following set of stroke features candidates
based on a review of gesture features studied in prior work [34],
gesture password classifications presented by prior authors [36][14]
and a close examination of the gesture examples in our own data

Figure 1: Representative samples of gestures showing the
variability captured by the eight gesture features studied in
this work.

set. The full set of features considered are summarized in Table 2
and described in detail below. Additionally, Figure 1 shows two
representative gestures for each feature illustrating how each is, in
practice, expressed.

Gesture length. Password length is one of the most common
password strength estimation techniques—longer passwords are, in
general, harder to guess or crack. It is likely the same holds true for
gesture passwords. We break down length into two sub-features:
the path length, or sum of distances between all points in a gesture
and the segment count in a gesture after applying Douglas-Peucker
(DP) line simplification [21].

Acceleration. Prior work has suggested that requesting users
draw gestures rapidly can increase the diversity of their propos-
als [16]. In addition, gestures with high acceleration may be prac-
ticed and fluent, properties that may be associated with execution of
more unique and complex stroke sequences. We calculate the mean
acceleration for each gesture from the positions and timestamps
recorded for each of its touch points.

Curvature. Gestures composed with a greater proportion of
curved strokes, rather than straight lines, may be more unique and
harder to replicate. We calculate the mean curvature of gestures
from the angles between sequential pairs of points [38]. We de-
fine two-features for curvature. Total curvature is the mean angle
between all pairs of points; segment curvature is calculated in the
same way, but after first applying DP line simplification.

Stroke Closure. Closed shapes, defined as strokes in which the
start and end points are proximate, may serve as frequent inspira-
tion for gesture passwords. Indeed, prior literature suggests that
geometric shapes, a category including various closed forms such
as circles, squares and triangles, are used in up to 44% of gesture
passwords [36]. Such high usage frequency may facilitate guessing.
Accordingly, we calculated stroke closure simply as the distance
between the start and end point of a gesture password [6].

Symmetry. Prior work has observed that symmetry can be
exploited in guessing attacks on gesture passwords [36]. As many
shapes may be drawn off-axis, we opted to assess gesture symmetry
by comparing the first half of a gesture to the second half. The
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Table 2: Stroke features examined in this work in terms of how they split the gesture set captured in the first study into two
groups. For each feature, we report the size of each group, the proportion of gestures cracked in each group and whether or not
these crack rates differed. In addition, the rightmost column indicates how different features were clustered together to retain
a final set of features. Rows in bold indicate features that were retained in the final meter design.

Weak Subset Strong Subset Chi-squared Feature
Stroke Feature Crack Rate (%) Cluster Size (#) Crack Rate (%) Cluster Size (#) 𝑝-value Cluster
Path length [1] 48.29% 642 20.95% 296 p < 0.001 1
Segment Count [6] 47.25% 690 18.75% 240 p < 0.001 1
Acceleration [55] 41.80% 244 37.96% 627 p = 0.333 NA
Total Curvature 48.08% 599 25.31% 320 p < 0.001 1
Segment Curvature [38] 49.13% 574 25.97% 335 p < 0.001 1
Stroke Closure [6] 34.71% 363 40% 615 p = 0.115 NA
Symmetry 50.08% 597 19.21% 380 p < 0.001 2
Compound 50.57% 522 23.68% 456 p < 0.001 3

Figure 2: Dictionary gestures selected by applying AP clustering on DTW distances between all gestures in our data set and
selecting the central examples from the top 20 clusters.

intuition here is that a symmetrical gesture will be divided into
two matching portions rather than by aligned along any given
spatial axis. To deal with minor differences in the scale of otherwise
symmetrical half-gestures, we extend this analysis and consider
gestures divided at 40%, 50% and 60% of their length. For each
division point we create two sub-gestures by simply splitting the
original gesture. In addition, we capture different axes of symmetry
by considering both forward and reversed stroke order for one of
the sub-gestures [2]. In total, we evaluate gesture symmetry by
creating 12 different pairs of sub-gestures (three division points
by two symmetric axes by two drawing orders). We assess the
similarity of each of these pairs via DTWmatching (after rendering
each sub-gesture scale, location, and rotation invariant) and retain
the lowest DTW distance as the symmetry score.

Compound. We define compound gesture passwords as those
that contain two or more distinct forms—for example, one shape
drawn within or adjacent to another. Prior work has suggested that
gesture passwords involving compound forms are more challenging
to crack [14]. In order to detect the presence of compound forms,
we examined our data set in detail. We noted that many compound
gestures are divided close to the mid-point, with at least one of
the sub-gestures taking the form of a closed shape, such as a circle,
square, or triangle, that embellishes the other. To detect this pattern,
we again split each gesture at the 40%, 50%, and 60% points, retain-
ing the division point achieving the lowest stroke closure score on
one of its sub-gestures. Based on the intuition that a compound
gesture must be composed of two non-trivial sub-gestures, we then
calculated the segment count for each sub-gesture as a surrogate for
complexity. Finally, we assessed the symmetry of each sub-gesture,
reflecting the idea that genuinely compound gestures will show
low symmetry. To combine these three measurements into a single
metric, we normalized each over the whole set of gestures, inverted
closure and symmetry, then summed them.

3.3.1 Stroke Feature Evaluation. We conducted a multi-stage pro-
cess in order to evaluate whether the features we study effectively
discriminate between stronger and weaker gesture passwords. We
first created a dictionary of commonly selected gestures from the
entire data set. This approach has previously been used in a highly
successful online attack on gesture passwords [14]. Secondly, for
each feature, we divided the gesture set into two groups by apply-
ing k-means clustering (with k=2) to the full set of feature scores.
This creates what we consider to be strong and weak gesture sub-
sets [36], specified in terms of each of our gesture features. Finally,
we applied the dictionary in an online attack scenario to each group
and compared the crack rates achieved. If the two groups show
markedly different crack rates, we interpret this to indicate the
feature is a salient metric for determining the strength of a gesture
password. We describe the different stages in this process in more
detail in the sections below.

Dictionary creation:We follow prior work [14] and create a
dictionary for online attack in which attackers are assumed to have
a fixed cap on the guesses they make (e.g., 20 [3]). We do this by
calculating the DTW distances between all gestures in our data
set and applying Affinity Propagation (AP) clustering to this data.
This creates a set of spatially coherent gesture clusters. We retain
the largest 20 clusters, and select the most central gesture in each
cluster as a representative example. These twenty gestures, shown
in Figure 2, form our online attack dictionary.

Guessing attack: We first calculate and normalize all stroke
features described in Section 3.3 for each gesture. For each fea-
ture we then create two subsets of scores by first excluding the
dictionary gestures and removing outliers (+/- 1.5*IQR). We then
apply k-means clustering (with 𝑘 = 2) to determine a threshold
for dividing the gestures into weak and strong subsets. We then
apply our dictionary to each subset and record the proportion of
gestures cracked. For this process we select a DTW threshold value
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of 11.28, corresponding to a FRR of 10%, and representing a reason-
ably strict level of performance that has been previously studied
in prior work [14]. We apply non-parametric significance testing
(Chi-squared test of independence) to determine if there is a dif-
ference between the two subsets. We use an alpha threshold of
0.00625, equivalent to applying Bonferroni corrections over our set
of eight tests. The results are summarized in Table 2 and indicate
the majority of features (all bar acceleration and stroke closure)
lead to subsets which vary significantly in crack rate. We interpret
this to mean they can serve effectively as heuristics to assess the
security of gesture passwords.

3.3.2 Feature Clustering. Given the relatively high number of fea-
tures that show good ability to distinguish between more and less
secure gesture subsets, we opted to explore the extent to which
they were redundant, or tended to assess the same underlying prop-
erties. We achieved this by normalizing all feature scores, then
cross-correlating the results. We then apply AP clustering to the
correlation matrix and retain the most central features in each
cluster. This process resulted in merging all length and curvature
features into a single cluster best represented by total curvature
and retaining symmetry and compound as unique features. Cluster
numbers and retained features (marked in bold) are shown in Table
2.

3.4 Gesture Password Score
Password meters typically display a score or indicator of password
strength. To calculate an equivalent metric for gesture passwords
we combine three assessments: 1) n-gram Markov probability, 2)
dictionary match score, and 3) stroke feature score. We use an n-
gram Markov model due to the technique’s well established use as
a metric for assessing password strength [12]. We follow a process
introduced in prior work to adapt this technique to gesture pass-
words [14]; we refer readers to this prior work for a full description
of the technique. In brief, it entails first simplifying and discretizing
each user-chosen gesture into all permutations of a fixed number
of length (2 to 4) and angle (8 to 12) segments. These tokenized
representations are then used to train n-gram Markov models. We
use a bi-gram model as the size of our data set is insufficient to
support higher order models. We also optimize the models by eval-
uating edge-case handling and add-1 smoothing. A final model is
selected based on balancing three metrics: performance in a 5-fold
guessing attack with top 20 probable gestures generated from the
model; mean DTW distance between each user-chosen and n-gram
represented gesture in the model and; the proportion of observed
n-gram cases. We ultimately selected an optimal n-gram model
that discretized gestures into three length and ten angle segments
and used 8% edge-case handling and Laplace add-1 smoothing. We
note these parameters are similar to those selected in the study that
introduced this method [14]. With this model, we then calculate a
probability score for each gesture. After completing this process,
we normalize the probability scores based on those calculated for
the full set of gestures.

Comparing user-chosen gestures with dictionary items may pre-
vent users from selecting common gesture passwords. We create
an extensive gesture dictionary by extracting a large set of rep-
resentative gestures from our gesture password set. Specifically,

we apply AP clustering on the match scores between all gestures.
This generated 141 clusters. We choose the center of each cluster
as a dictionary gesture. To derive a dictionary match score, we
match a user gesture password against all items in the dictionary
and select the maximum similarity value. As with the probability
score, we normalized the dictionary match score with respect to
the maximum and minimum dictionary match scores observed in
our data. We then calculate a stroke feature score by calculating
the three selected features described in Section 3.3: total curvature,
symmetry and compound. We normalize each metric using distri-
butions from the full gesture set, then take the mean to generate
a final normalized stroke feature score. Finally, to create a overall
score for each gesture password, we assign equal weights to each
of these three metrics to create a combined total (ranging from 0-3).
This score assesses a gesture in terms of its susceptibility to online
(dictionary match score) and offline (n-gram Markov probability)
security vulnerabilities as well as in terms of the salient features
and properties it exhibits (stroke feature score).

3.5 Gesture Strength Meter Design
We designed a gesture strength meter based on three design ele-
ments: a score bar; textual advice on how to improve an entered
gesture and; interactive graphical recommendations for possible
changes. We note our meter did not present (or prime) users with
novel gestures at any time. Rather it offered various recommen-
dations for how users could improve the gesture candidates they
themselves generated. The final meter is illustrated in Figure 3 and
we describe the design elements in detail below.

3.5.1 Score Bar and Text. We provide basic feedback in the form of
a visual bar: the bar fills (by quarters) and changes its color as the
rated security of a gesture password increases. We presented four
security levels: very weak (red), weak (orange), fair (yellow), and
strong (green), each corresponding to one quartile of the gesture
password score [11]. In addition, following recommendations in
prior work [59], we provided text feedback explicitly highlighting
these classifications (e.g., “Your password is fair”).

3.5.2 Minimum Strength Requirement. Password strength meters
commonly require users to create strong passwords which meet
predefined criteria, such as being assessed with rankings of at least
“medium” or “fair” [18]. Furthermore, meters studied in a research
context typically mandate passwords meet minimum length limits
or bar passcodes on a blacklist [58]. Following this practice we
required that gesture passwords achieve a rating of “fair” or bet-
ter (corresponding to the mid-point of our score scale) in order
to progress. This choice also reflects prior work on studying ges-
ture passwords with crowd workers. Cheon et al. [14], for example,
propose several gesture password policies, but found only those
that mandated compliance (such as a blacklist) were effective. We
note than although we require proposed gesture passwords meet
a minimum score, participants are not required to use meter func-
tionality to achieve this goal; entirely user generated gestures that
meet score requirements were also accepted.

3.5.3 Recommendations and Feedback. Password strength meters
are more effective when they provide interactive and responsive
feedback that can help users improve their password selections [58].
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Figure 3: Screenshots showing the gesture strength meter on a mobile device. Left shows a user’s entered gesture, an overall
strength rating (orange bar and text) and three specific recommendations for improvement. In the next two shots, the user has
tapped the third and the first recommendations. The system proposed gesture revision is shown on the gesture entry box and
the meter has been updated to reflect its strength rating. In the right shot the user has entered (and matched) the recommended
gesture and is ready to select this as their final gesture password.

We sought to deploy similar techniques by supporting users in
adapting their gestures to achieve improved performance in terms
of the three gesture features associated with improved security iden-
tified in Section 3.3.1: total curvature, symmetry and compound.
For gestures that score poorly on each feature we display a tex-
tual recommendation for improvement, a specific recommended
gesture improvement and a security evaluation (simply re-running
our assessment procedures) of the improved gesture. As such, a
user entered gesture will receive between zero and three specific
recommendations for improvement that depend on a detailed as-
sessment which of its features are potentially problematic. This
overall interface can be seen in Figure 3 and three representative
recommendations for a single user-generated gesture can be seen
in Figure 4. We provide a detailed description of how we generated
this feedback below.

For gestures assessed to be weak in terms of total curvature (i.e.,
those composed predominantly of straight lines), we display an
explicit recommendation to “add more curved lines in your gesture”.
We provide an improved gesture by applying DP line simplification,
selecting a large straight stroke and replacing this with a quadratic
Bézier curve with a randomly chosen intermediate control point.
This replaces a straight stroke segment with a randomly curved
one, while leaving the rest of the gesture unchanged. For gestures
that score highly on symmetry, we recommend users “avoid us-
ing [a] symmetric gesture”. We propose an improved gesture by
rotating part of the original. We randomly select a large portion
of the gesture (between 40% and 60%) and apply a random rota-
tion (between 45° and 60° in either direction). Finally, for those
gestures scoring weakly on our compound feature, we recommend
users “combine more elements in [their] gesture”. We present an
improved gesture by randomly scaling, rotating and appending a
commonly used gesture (from the gesture dictionary defined in
Section 3.3.1) to the start or end of the user’s original gesture. For
each of these recommendations, we presented an associated “Click
to Apply” button. Selecting this updates the gesture input region

Figure 4: Gestures suggestions in the password meter. An
original user-chosen gesture (left) is improved in terms of
curvature (left-center), to avoid symmetry (right-center) and
by integration of an additional forms to create a compound
gesture (right).

with the recommended gesture and provides updated feedback (bar,
text and recommendations) related to the new gesture. Users can
then further revise their gestures by integrating a new set of rec-
ommendations and suggestions, return to their previous gesture
via a “back” button or confirm the currently displayed gesture as
their final password by tracing over it.

4 METER STUDY
We conducted an online study to evaluate the performance of our
gesture strength meter. We capture and contrast the security and
usability of user generated gesture passwords in a between groups
design comparing a baseline condition against one involving our
gesture strength meter in a large sample (𝑛 = 600). The study was
approved by the local IRB and participants were aware that we
were collecting gesture passwords in order to conduct research on
their security.

4.1 Study design
We recruited participants fromMTurk following general procedures
in the first study. In addition, we logged user’s IP address and used



GestureMeter: Design and Evaluation of a Gesture Password Strength Meter CHI ’23, April 23–28, 2023, Hamburg, Germany

Table 3: Usability data from the meter study in terms of means (𝜇), standard deviations (𝜎) and medians (𝜇).

Setup Cancels (#) Match Failures (#) Setup Time (s) Recall Time (s) Recall Attempts (#)
𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇

Baseline 0.48 1.98 0.00 0.10 0.42 0.00 23.16 46.12 14.26 3.67 4.99 2.42 0.10 0.55 0.00
Meter 1.58 2.78 1.00 0.25 1.01 0.00 113.19 127.24 78.32 6.75 14.85 3.80 0.23 0.83 0.00

this to screen our data and prevent repeat participation [30]. Partici-
pants who signed the consent and opted to continue with the study
went through broadly similar steps of completing a demographic
survey then creating, confirming, practicing and recalling their ges-
ture passwords. The study took a median of 180 seconds to complete
and participants were compensated with 1 USD, corresponding to
an median hourly rate of 20 USD.

4.2 Participants and Measures
Six hundred US based MTurk participated in this study: 300 in each
condition. The majority of participants were white (75.5%), black
/ African American (9.5%), Hispanic (7.5%) or Asian (5.3%). Most
were educated to college (55%), post-graduate (32.3%) or high school
level (11.5%). Participants worked in diverse fields such as man-
agement (19.2%), computers and mathematics (16.2%) and business
and financial operations (12.2%). They were aged between 18-24
(8.7%), 25-34 (58.5%), 35-44 (20.5%) and 45 or older (12.3%) and 95%
of them were right-handed. Similar to the first study, we recorded
all raw gestures, and details on the setup (number of setup cancels
and setup time) and recall (recall rate, recall attempts and recall
time) processes from each participant. We use the baseline data to
check for equivalency with our first study and also compare results
between the baseline and password strength meter conditions.

4.3 Usability Results
Usability measures are summarized in Table 3.We note that baseline
results closely match those recorded in the first study, suggesting
the two conditions were, in practice, equivalent. All measures show
positive skews and failed normality checks, so we conduct non-
parametric Wilcoxon rank sum tests to compare between baseline
and password strength meter. The results for setup measures indi-
cate that both setup cancels and setup time are significantly elevated
with the password strength meter (both at 𝑝 < 0.01). Setup time
is particularly high. However, we note that substantial increases
in setup time are commonly reported for password strength me-
ters [44]. In Ur’s [57] substantial study of textual passwords, for ex-
ample, use of a meter triples password setup time from 19.9 seconds
to 59.8 seconds. Similarly, alternative policies previously proposed
for gesture passwords, such as Cheon et al.’s [14] blacklists led to
similar performance hits (raising setup times from from 29.48 sec-
onds to as high as 82.69 seconds). So while elevated setup times with
our meter are not surprising, we do note their extent (means greater
than four times baseline) suggest there may be scope for improving
the usability of our meter design. To explore potential causes for
these substantial increases, we also examined engagement with the
meter’s recommendation functionality, noting that 46.33% of users
generated recommended gestures (each a mean of 3.53 times). The
process of creating and viewing these recommended gestures likely
took additional time and may also have resulted in some gestures

that were ultimately deemed to be unsuitable and, thus, contributed
to the increased the number of setup cancels. During recall, only
recall time significantly differed between conditions, with meter
requiring modestly prolonged time to enter (𝑝 < 0.01). Short-term
recall rate remained high (at 99.3% for baseline and 98% for meter)
throughout; a Chi-squared test of independence did not show a
significant difference (𝜒2 = 1.14, 𝑝 = 0.29) in this measure.

4.4 Security Results
4.4.1 EER. We calculated EERs for each condition following pro-
cedures in the first study. In the baseline condition, we recorded an
EER of 2.8% at a DTW distance threshold of 16.42. While for meter
condition, the EER was 1.82% at a distance threshold of 18.77. We
note that the baseline EER closely matches that attained in the first
study (2.99%) while that achieved in the meter condition is notably
reduced. Additionally, this reduction is achieved at a higher DTW
distance threshold (18.77 vs 16.42), further reinforcing the idea that
that there is increased diversity of generated gesture passwords in
the meter condition.

4.4.2 Guessing Entropy. To extend our security analysis, we evalu-
ate the gesture sets from both conditions, and data from the first
study, in terms of their entropy. As the gesture passwords generated
with our meter may exhibit different probability distributions to
those captured in our first study, we first optimize 2-gram Markov
model parameters for data from this condition using the processes
outlined in Section 3.4. The results were similar: discretization into
three length and ten angle segments was optimal. As such, we
retained model parameters from our first study and trained two
new 2-gram Markov models with the data from our baseline and
meter conditions. We then calculated the probabilities of all possible
gesture passwords generated in these models in descending order
and use this data to derive partial guessing entropy [7]: the number
of guesses needed to crack different fractions of a password data
set expressed in terms of bits of information. This data is shown
in Figure 5 (left). These results indicate that the meter condition
outperforms the baseline and original data set at all alpha levels
(referring to the portion of the passwords that can be cracked).
This effect is particularly prominent at lower alpha levels (< 0.4),
suggesting that the meter condition includes fewer gestures that
are easily cracked—or to use the term proposed by Liu et al. [36], a
smaller weak subspace of gesture passwords. Additionally, at higher
alpha levels the baseline condition outperforms the original study.
This may be due to the smaller number of participants. To further
quantify the differences between our conditions, we calculated the
probabilities of all gestures from the first and second studies using
the respective 2-gram Markov models, and generated kernel den-
sity estimations of this data. The results are shown in Figure 6, and
clearly suggest that a greater proportion of meter gestures exhibit
lower probabilities than baseline gestures from both studies. To
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Figure 5: Left chart shows partial guessing entropy, expressed as bits of information, to crack portions of the gesture password
data sets. Right chart shows online attack crack rates over FRR thresholds from 0 to 15%. Bold vertical grid-lines highlight
performance for FRRs of 5% and 10%. Both charts include data from both online studies.

Figure 6: Kernel density estimations of the probability distributions of gestures from both online studies.

determine if these differences are statistically significant, we ran
a two-sample Kolmogorov-Smirnov (K-S) test on the baseline and
meter data from the second study: this assesses whether or not they
are drawn from the same overarching distribution. The K-S test
result (𝐷 = 0.62333, 𝑝 < 0.01) indicates that they are not—that the
probability distributions of gestures in our baseline and meter con-
ditions differ significantly. This result reinforces our conclusions
from the entropy data—meter gestures were harder to guess than
baseline gestures.

4.4.3 Guessing attack. We followed procedures from the first study
to generate new gesture dictionaries specific to each condition—see
Figure 7. We then used these to conduct an online dictionary based
guessing attack (see Section 3.3.1) on the gestures generated in each
condition. When presenting and discussing results from this analy-
sis, we also include results using this attack on the original study
to provide context and shed light on whether the reduced sample
sizes in the meter study influence the results. Full data for a wide
range of FRR thresholds is shown in Figure 5 (right). To examine
these data statistically, we selected two DTW thresholds, one corre-
sponding to a fairly lenient threshold (5% FRR) that would accept a

relatively high proportion of genuine user authentication attempts,
and the other to a more strict threshold that would reject genuine
users more frequently (10% FRR). With these threshold values, crack
rates for our first study are, respectively, 47.8% and 35%. They are
similar for the baseline condition in our second study—48.33% and
32.67%—but notably reduced in our meter condition—20% and 11%.
We used four Bonferroni-corrected Chi-squared tests of indepen-
dence to compare results from the second study baseline condition
against data from both the first study and the meter condition. We
record no significant differences in crack rates between the base-
line and first study data (𝜒2 = 0.01 to 0.46, 𝑝 > 0.1), suggesting
the reduced sample size in the second study has limited impact on
the validity of the results. However, the meter condition offered
statistically improved resistance to guessing compared to baseline
at both FRR thresholds (𝜒2 = 40.01 to 52.27, 𝑝 < 0.001). The im-
provements are also relatively large scale—from 58.62% to 67.03%
lower than baseline—suggesting that the meter enabled participants
to generate substantially more secure gestures than the baseline
condition.
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Figure 7: Dictionary gestures selected by applying AP clustering on DTW distances between all gestures in the baseline (top)
and meter (bottom) conditions in our second study. Selected gestures are the central examples from the top 20 clusters from
each data set.

5 MULTI-SESSION STUDY
We conducted a multi-session lab study to complement the results
from our online study; it sought to capture aspects of performance
beyond the scope of the online study. Specifically, we designed
this study to capture gesture password recall performance after
between one and seven days. This data will shed light on the impact
of our meter on memorability over more protracted periods. In
addition, we report on both quantitative data (in terms of usability
and workload) and qualitative comments (by summarizing user
feedback from interview sessions) to improve our understanding
of participants’ experiences with our meter.

5.1 Participants
We recruited 20 users (ten males, ten female) for this study from
the local student body: 15 were undergraduates and five were grad-
uate students. They majored in engineering (17), management (1),
physics (1) and design (1). They were between 19 to 29 years old
(mean: 22.4, SD: 3.1) and all right-handed. All were Asian. They
reported using various (and in some cases multiple) methods to
secure their smartphones: fingerprint (10), four digit PIN (8), Face
ID (6) and pattern lock (6). They were, in general, heavy and expe-
rienced smartphones users: they self-rated their familiarity with
smartphones to be high (4.4/5.0) and, while one declined to answer,
the remainder reported unlocking and using their smartphones very
frequently: between 50 or fewer times (4) a day through 51-100
times (7), 101-150 times (6) and more than 151 times (2).

5.2 Study Design
The study followed a between groups design: ten participants used
the meter and ten participants used the baseline gesture password
system. Participants came to the lab to complete the initial en-
rolment session. However, to ensure results are comparable with
our online studies, we used the same experimental platform and
had participants use their own mobile device to access the gesture
password system. Enrolment followed processes in our online stud-
ies. Participants were first asked to make gesture passwords that
were both secure and memorable. They then created and confirmed
a gesture password, practiced it ten times, completed a memory
game and then an immediate recall session. After this session, par-
ticipants completed the NASA Task Load Index (TLX) [28] and
System Usability Scale (SUS) [10] questionnaires to assess their
experiences during enrolment. Additionally, we conducted an in-
person semi-structured interview to capture qualitative aspects of
their experiences. We then conducted three recall sessions: after

one day, two days and seven days. Each recall session involved
sending participants links to the study which they then completed
on their own device and at their convenience. They did not return
to the lab for these sessions. The recall sessions were structured
identically to the immediate recall session that took place directly
after enrolment. If a participant failed to recall their password in
any session (after five attempts) their participation in the study
was terminated. After the final recall session, participants again
completed the NASA TLX and SUS questionnaires to assess their
experiences during recall. Participants were compensated with 3.6
USD (in local currency) for each session in this study (max of 14.4
USD for all sessions).

5.3 Security Results
We examined crack rates for the gestures generated in this study. To
calculate these we used the gesture dictionaries and processes from
the meter study and report crack rates at the key FRR thresholds
of 5% and 10%. For baseline these are 30% at both thresholds. For
meter, they are, respectively, 20% and 10%. While sample sizes in
this study are too small to support statistical analysis, we note
these figures are broadly aligned with those from the online meter
study (see Figure 5) and support the claim that our meter helps
users to create more secure gestures. In addition, baseline may be
performing modestly better than in our meter study, a trend also
observed with other password schemes: credentials generated in
offline studies [13] tend to be more secure than those generated in
otherwise similar online studies [15].

5.4 Usability Results
Quantitative usability results are summarized in Table 4 for the
enrolment session and Table 5 for the multi-day recall sessions. One
participant in the baseline condition dropped out of the final (7-day)
recall session. Beyond that, we note that all participants successfully
completed all recall sessions (indeed, there was only a single failed
authentication attempt across the whole study). All measures failed
normality checks due to positive skews, so we used non-parametric
Wilcoxon rank sum tests to examine differences between baseline
and meter. The only measures in which significant differences occur
are setup time and setup cancels: both are increased in the meter
condition (at 𝑝 < 0.01). These differences mirror the two most
prominent variations in the online meter study and support our
prior conclusions that it takes longer for participants to create
gestures in the meter condition, at least in part because they cancel
or otherwise revise their gestures more frequently. The results
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Table 4: Usability results from enrolment session and initial (immediate) recall in the multi-session study. Data reported in
terms of mean (𝜇), standard deviation (𝜎) and median (𝜇).

Setup Cancels (#) Match Failures (#) Setup Time (s) Recall Time (s) Recall Attempts (#)
𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇

Baseline 0.00 0.00 0.00 0.00 0.00 0.00 29.06 20.51 24.91 3.36 1.55 3.93 0.00 0.00 0.00
Meter 2.90 2.51 2.50 0.10 0.32 0.00 130.50 54.51 139.91 3.81 0.99 3.97 0.00 0.00 0.00

Table 5: Recall time (s) and recall attempts (#) during follow-up recall sessions after one day, two days and one week. Data is
reported as mean (𝜇), standard deviation (𝜎) and median (𝜇).

Day 1 Recall Time Day 2 Recall Time Day 7 Recall Time Day 1 Recall Atts. Day 2 Recall Atts. Day 7 Recall Atts.
𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇

Baseline 2.95 1.40 2.64 3.71 2.33 2.79 2.58 1.45 2.31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Meter 4.26 1.94 3.10 3.60 1.37 2.97 3.57 1.65 2.91 0.1 0.32 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6: NASA TLX data after enrolment and final recall sessions in terms of mean (𝜇), standard deviation (𝜎) and median (𝜇).

Mental Physical Temporal Performance Effort Frustration Overall
𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇 𝜇 𝜎 𝜇

Enrol Baseline 4.4 4.1 3.5 2.9 2.1 2.0 3.1 2.5 2.0 2.9 2.0 2.5 4.5 3.7 4.5 1.8 1.3 1.0 3.3 2.0 2.7
Meter 7.3 2.5 7.5 5.4 3.7 6.0 4.5 2.5 4.0 5.8 4.2 4.0 8.5 4.4 6.0 4.9 3.4 4.0 6.1 2.8 5.8

Recall Baseline 1.8 0.8 2.0 1.2 0.7 1.0 1.2 0.4 1.0 1.3 0.5 1.0 1.8 0.8 2.0 1.5 1.4 1.0 1.5 0.4 1.7
Meter 3.0 1.6 3.0 2.9 1.7 2.5 3.1 1.5 3.0 3.0 1.5 3.0 4.0 2.5 3.5 1.8 0.9 1.5 3.0 1.3 2.8

also extend our prior data by indicating that meter and baseline
gestures are equally rapidly and accurately recalled in subsequent
authentication sessions. This suggests that use of our meter during
enrolment does not impact subsequent performance, in terms of
usability metrics, during multi-day recall.

The subjective measures corroborate these conclusions. Due to
similar trends over all TLX items (see Table 6), we opted to conduct
Wilcoxon rank sum tests only on overall workload scores for both
enrolment and recall. Both show significant differences (p=0.031 and
p<0.009, respectively), indicating that meter led to higher levels of
perceived workload: meter gestures took more effort to both create
and recall. However, it is also worth contextualizing the raw values.
Overall workload for baseline is 3.3 for setup and 1.5 for recall. For
meter these figures are 6.1 and 3. These scores are associated with
very low to low levels of workload [27] and suggest that, despite the
numerical differences, participants experienced few difficulties in
either condition or task. SUS data confirm this. Scores of 83 (𝜎=13.58)
and 86.94 (𝜎=10.74) for enrolment and recall were recorded for
baseline and of 78.76 (𝜎=16.3) and 77.75 (𝜎=16.89) for meter. These
levels are associated with “good” levels of usability [5]. Combined
these results suggest our participants were able to operate both
baseline and meter systems with ease.

5.5 Qualitative Results
Qualitative data from interviews and questionnaires with partic-
ipants shed light on some of these variations. After enrolment,
comments about security in the baseline condition suggested par-
ticipants lacked knowledge about how to create gestures that would
be secure. While six participants felt gestures would be “diverse”
and “secure” as a password system, two worried that “simple or
memorable shapes would be easily guessed by others”. Many also
referenced naive approaches such as the use of simple shapes (six)

or letters (two) as a creation strategy. A key factor underlying these
tensions was lack of knowledge about what would make a ges-
ture more secure. Three participants reported simply relying on
their own intuition to create a “unique shape” while three others
felt “modifying the strokes of a [common] shape” was appropri-
ate. Usability concerns also impacted their proposals. In order to
ensure their gesture was memorable, three participants employed
the strategy of “modifying the shape of [their] current pattern lock”
and one based their gesture on the initial characters from their
name. Others were motivated by efficiency or reliability, with two
remarking they felt a key property of gesture passwords is that they
would take "less time time to input" and a further two stating that
they created gestures that would be “easily reached by the thumb”.
Perhaps reflecting these creation strategies, participants responded
to questions about how they remembered their gestures after fi-
nal recall by remarking they simply “recalled the shape” (four) or
“keywords” (two) that reference it. No participant reported noting
down their gesture.

The guidance presented in the meter condition strongly altered
such patterns. Three participants again noted that the inherently
“diverse” nature of gestures would provide strong security and two
remarked the “recommended options” in the meter would likely
increase this. In particular, the meter was valued as it could increase
security via the strategy of “fill[ing] the bar” (three users) via re-
finements that increased the “length” or “complexity” of proposed
gestures. In addition, three participants explicitly noted strategies
of “distorting”, “combining” or “aligning” their original gesture
with system suggestions. One participant observed that the various
suggestions presented helped ensure gestures modified in this way
were “still memorable” and two noted that the revised gestures
would still take “less time" to enter. After recall, participants re-
ported using a modestly wider range of strategies to remember their
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gestures. Once again, no participant indicated noting down their
gesture, but one stated they “practiced repeatedly on [their] hand
to memorize”. Three others simply noted recalling the “dominant
shapes”, the “two shapes and their orders” or “keywords imagined
from both shapes”. These comments support our claims that feed-
back from our meter was able to effectively support users as they
create gesture passwords.

Participants also expressed concerns and made recommenda-
tions in both conditions. Five participants worried that their may
be “recognition failures” with gesture recognition authentication
systems. For meter, individual participants also raised issues about
the "time to memorize" and "complicated" form of the final gestures,
with another noting that the meter’s operating principles were hard
to fathom: the “improvement [in a revised gesture] is visually un-
clear”. They suggested various interface improvements to deal with
these issues. Some related to the input surface itself and included
enlarging it or augmenting it with visual aids such as a grid, or
suggestions for candidate “touch start positions” during gesture
creation. Others relate to memorability, including presentation of
“hints or aids” to recall gestures or “numerical feedback on how suc-
cessfully gestures are matched” and, in the case of meter, for “more
diverse recommendations”. In general these comments indicate that
participants had generally positive opinions about the viability of
gesture authentication and felt they were able to understand and
use our meter to increase the security of the gestures they create.

6 DISCUSSION
We presented the data driven (N=1000) design and evaluation of a
gesture password strength meter incorporating a feedback bar (or
strength rating), textual recommendations for improvement and
interactive, dynamically explorable recommended gestures. Results
from a study evaluating its impact (N=600) indicate that it achieves
substantial increases in security at the cost of extended enrolment
times and modest decreases in recall time. Recall rates remain high.
A subsequent multi-session study confirms these results for en-
rolment time and recall rate, but also suggests that multi-session
recall times may be stable over protracted periods. We discuss the
implications of these findings in detail below.

Usability data demonstrated the most extreme differences be-
tween baseline and meter conditions during setup. Most critically,
in our second study, setup times were elevated from a median
of 46.12s for baseline (itself somewhat greater than the 30.13s re-
ported in closely related prior work [14]) to 127.24s for meter. Our
multi-session study echoes these variations. These results clearly
show that users spent longer creating gesture passwords using
the meter than they did with the baseline system; such increases
are commonly reported in studies of password meters [57]. How-
ever, interpreting such increases as a reduction in usability may be
misleading. We note that are users were not mandated to use the
meter features. As such, an alternative view of the increased set
up times is that they encouraged user engagement in the gesture
creation process, a potentially desirable quality associated with
users selecting higher security passwords [45]. Indeed, use of the
interactive meter functionality was relatively high: 46.33% of users
in our second study selected at least one proposed improvement, a
figure modestly greater than the 37.8% Ur at al. [58] report in their

study of a similar recommendation system for text passwords. Our
multi-session study suggests reasons for these high levels of engage-
ment: participants reported iterating on their gestures to increase
security, directly integrating meter suggestions and even requested
that future meter designs propose a larger menu of options.

Recall data from our second study also shed light on user’s expe-
riences with our system. The baseline condition in our second study
shows very high immediate recall rates of 99.3%, figures broadly
in line with prior work (up to 98% in a similar study [14]). This
reinforces the basic idea, motivating the work in this paper, that ges-
tures can serve as highly memorable passwords. Importantly, short
term recall rates for our meter (at 98%) do not significantly decrease
from those in baseline, a level of performance that may be improved
over that achieved in a prior study of blacklist-based gesture pass-
word policies (short term recall rates from 96.9% to 95.9%, with this
latter figure representing a significant drop in performance [14]).
These high short term recall rates support our assertion that users
exposed to our meter have increased engagement with the gesture
password creation process—high levels of engagement may be as-
sociated with increased gesture password memorability [15, 32].
Median recall times with the meter also significantly increased from
2.42s to 3.8s in our second study. While we note this could be asso-
ciated with increased difficulty in entering gesture passwords in
the meter condition, we also note it could also simply be due to the
use of more sophisticated (or just longer) gestures. Such gestures
will inevitably require more time to enter. Indeed, examining the
mean path length of meter (24.3cm) and baseline (14.7cm) gestures
supports this explanation. We argue that the fact that the meter’s
longer recall times are not associated with increased recall failures
suggests the gestures generated are simply longer (or include more
elements) rather than being more fundamentally challenging in
terms of qualities such as memorability. Our multi-session study
supports these interpretations: recall rates over one-day, two-days
and one-week are unchanged (and perfect) between baseline and
meter and, in this smaller sample, we do not observe variations in
recall time.

Our security results also show promise. Data from the first study
exhibits similar properties to that collected in prior work: partial
guessing entropy levels are relatively high (compared to PIN [31]
and pattern [15]) and well aligned with prior work on gesture
passwords, as are other metrics such as EERs and DTW decision
thresholds [14]. While crack rates in response to a dictionary attack
were somewhat elevated—32% here vs 23.13% in related work [14]—
this may simply reflect the smaller sample in our study (1000 vs
2594). We conclude our data set is representative of those in the lit-
erature and combines good security performance (in terms of basic
metrics) with a worryingly high susceptibility to dictionary-based
attacks. Our second study indicates our gesture meter successfully
addressed this security concern—it demonstrated dramatically im-
proved resistance against dictionary guessing attack. At the specific
decision threshold associated with a FRR of 11.54%, a figure studied
in prior work [14], a dictionary attack cracked 10.33% of gesture
passwords generated using the gesture strength meter, a 67.03%
improvement over the 31.33% cracked in our baseline condition.
These increases in security were also associated with improvements
in other security metrics such as EER (1.82% vs 2.8%) and partial
guessing entropy. These improvements are competitive compared
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Table 7: Subjective categorization of gestures passwords in both studies using the gesture categories from Cheon et al. [14].
Categories with no recorded gestures are omitted. Data shows mean category size from two raters and agreement calculated by
Cohen’s Kappa.

Geometric Math Math Music Inter-rater
Digit Shape Letter Function Symbol Symbol Compound Cursive Iconic agreement

First Study 1.5% 26% 43% 3% 0.5% 0.5% 19.5% 3% 3% 𝑘 = 0.46
Baseline 8% 15.5% 33% 0.5% 0.5% 1% 26% 10% 5.5% 𝑘 = 0.44
Meter 4% 6.5% 0% 0% 0% 0.5% 73.5% 7.5% 8% 𝑘 = 0.63

to prior work—Cheon et al.’s [14] blacklist policies, for example,
achieve crack rates as low as 14.93% at a similar 11.54% FRR thresh-
old, 44.53% higher than those reported for our meter.

To shed light on how these improvements are achieved, we fol-
lowed prior work [14, 36] and examined the generated gestures in
detail. We first examined the sub-strokes in all gestures in terms
of the distributions of their start points, their lengths and their
angles—this data is shown in Appendices A and B. We note the
meter is associated with an increased diversity in (position invari-
ant) gesture start points, a quality that is associated with improved
security in pattern based authentication [15]. In addition, we sub-
jectively categorized gestures from both our studies, an approach
also previously used to understand gesture diversity [14, 36]. The
results, representing the mean categorizations from a pair of raters
(achieving moderate to substantial agreement) are shown in Table 7.
This data shows a stark contrast between the relatively high num-
bers of gestures categorized as letters or geometric shapes in the
first study and second study baseline condition and the low num-
bers for these categories with the meter. These findings support
our claims that our meter effectively engaged users during gesture
creation, transforming this into a prolonged process that ultimately
led to the generation of more complex and sophisticated, but still
memorable, gesture passwords that achieved increased resistance
to dictionary based attack.

There are several limitations that affect our work; these outline
directions for future research. First and foremost, running larger
online studies (e.g., N>1000) would offer many advantages. For
example, they would support development of more accurate ges-
ture rating algorithms and the identification of additional stroke
features that are associated with more secure gesture passwords. In
addition, larger samples would increase confidence in the usability
and security results we present. Larger scale multi-session studies
might also tease out variations in performance during multi-day
recall and ones that target more frequent use, such as the tens to
hundreds of times our participants’ report unlocking their phones
each day, might enable examination of the effects of fluent, expert
gesture production. Furthermore, in order to increase confidence
(and remove any lab-bias) in the qualitative results we report re-
garding users’ experiences with our gesture password systems (in
Section 5.5), future large scale studies should include capture of
users’ subjective opinions using formal measures such as TLX and
SUS questionnaires and, additionally, open-ended text responses.
In addition to such increases in scale, future work should also apply
more rigorous methods to the analysis of open-ended qualitative
data (e.g., thematic analysis [9]).

We also identify opportunities to improve our modeling. For ex-
ample, while the DTW approach to gesture recognition we used is
borrowed from closely related prior work [14, 37], alternatives such
as Protractor [35], based on inverse cosine distance, and ensemble
approaches such as Garda [37] may offer accuracy benefits—future
work should explore and contrast how gesture strength meters per-
form with a range of different recognizers. Additionally, integrating
more sophisticated optimization approaches such as bootstrapping
[12] may lead to models that are capable of more accurately dis-
tinguishing between strong and weak gestures, or that directly
support the generation of effective cracking dictionaries. We also
see many avenues for improving our meter design. Feedback in our
multi-session study provided numerous suggestions including im-
proving the basic interface design (e.g., adding a grid to the drawing
canvas), increasing the set of gesture recommendations for each
issue detected (rather than just shoehorning users into one) and bet-
ter exposing the rationale for the proposed gesture improvements,
perhaps by animating them to clearly represent the changes or in-
cluding explicit textual descriptions explaining how they have been
improved. In addition, several users suggested increasing the size
of the gesture drawing canvas to facilitate creating more detailed
gestures, a design that has also been proposed in prior work [50].
While the small input area in our work was explicitly selected to
support single-handed thumb-based unlock input, a formal study
of the security and usability impacts of a larger gesture entry area
would be of great interest. Exploring such design changes promises
to further improve the security of the gesture passwords that users
generate while potentially reducing the enrolment and recall times
required to create and enter them.

Finally, it is worth discussing practical issues relating to how—
and why—gesture passwords might be integrated into future smart
devices. One current trend that impacts this is the growing use of
biometric authentication techniques, such as fingerprint or Face
ID, to unlock devices [20]. While practical and effective, we note
such techniques do not remove the need for knowledge-based au-
thentication schemes. Indeed, knowledge-based schemes such as
PIN and pattern are still considered the primary authentication
technique on devices in which biometric techniques are enabled.
Knowledge-based authentication remains mandatory: it is required
periodically (e.g., once every 48 hours), and used explicitly for se-
curity critical procedures such as restarting or updating the device,
and changing authentication settings [48]. In contrast, due to the
uncertainties about their inherent error rates and reliability, bio-
metrics are still considered as secondary techniques to increase
user convenience. As such, we see a viable future for knowledge-
based device lock passwords, including those using gestures, even
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in light of the rapid adoption of biometric approaches. We also note
our meter has been carefully designed to be deployed in realistic
future device lock scenarios. For example, we opted for a small
input area to mimic the one-thumbed user experience common
when operating existing pattern or PIN entry systems. In addition,
we carefully modelled our enrolment processes on those present
in existing smart phones—users create gestures, then feedback is
given with respect to password selection policies (such as black-
lists [40], or our meter), and, assuming the entered credentials are
acceptable, users then confirm them. As such, we do not believe
our meter raises barriers to adoption that are substantially greater
than those that face any other novel authentication technique. We
also note that while we study gesture passwords for phone screen
lock, they may ultimately have more potential in emerging device
form factors such as Head Mounted Displays (HMDs). These sys-
tems typically lack the high performance touch surfaces required
to support the rapid and precise alphanumerical input required for
PINs and passwords, but do integrate high performance 3D hand
trackers, thus enabling 3D gesture passwords. While prior research
has demonstrated the technical feasibility of such gesture password
systems [52], we are not aware of any work that has acquired the
large-scale data sets required to analyze their security. We identify
capturing and analyzing such data sets and designing gesture se-
lection policies to help users create better 3D gesture passwords as
exciting challenges for future work.

7 CONCLUSION
This work explores the potential of gestures to serve as memorable,
secure and easy to enter authentication credentials for smartphone
unlock. Building on recent work that suggests that user proposed
gesture passwords can be readily cracked, we present the design
and evaluation of a gesture strength meter that provides both over-
all ratings and actionable feedback to its users. We show that this
tool can help users create gestures that are substantially more se-
cure, a process that takes longer but does not sacrifice memorability,
even over periods of up to one week. The work in this paper repre-
sents a meaningful step towards understanding the strengths and
weaknesses of authentication via gesture passwords and presents
a system design, and evaluation data, that future researchers and
system designers can build on to create real world gesture password
authentication systems.
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A APPENDIX A
Figure 8 shows all sub-stroke start points from all gestures in all studies and conditions reported in this paper. The meter condition in the
second study shows a markedly more even distribution of initial sub-stroke start points (basically gesture start points) compared to those
generated in the baseline condition and first study.

Figure 8: Distributions (in %) of all sub-stroke start points in all gestures in both studies reported in this paper, discretized into
a three by three grid. Gestures are rendered scale and position invariant prior to calculating these distributions. In addition,
figures show initial sub-stroke (left column), final sub-stroke (right column) and all other strokes (center column).
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B APPENDIX B
Figure 9 shows all sub-stroke start lengths and angles all gestures in all studies and conditions reported in this paper. Compared to other
conditions and studies, the meter condition shows a somewhat elevated use of longer initial strokes and a reduction in the use of short final
strokes. In addition, initial stroke angles are more widely distributed away from the otherwise dominant left/down direction.

Figure 9: Distributions (in %) of all sub-stroke angles and lengths for all studies and conditions reported in this paper. The
discretization into ten angles and three lengths follows that used in the n-gram models presented in this paper. We separate
data for initial sub-strokes (left), final sub-strokes (right) and all other sub-strokes (center).
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