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Abstract—Touchscreen gestures are attracting research atten-
tion as an authentication method. While studies have showcased
their usability, it has proven more complex to determine, let
alone enhance, their security. Problems stem both from the small
scale of current data sets and the fact that gestures are matched
imprecisely – by a distance metric. This makes it challenging
to assess entropy with traditional algorithms. To address these
problems, we captured a large set of gesture passwords (N=2594)
from crowd workers, and developed a security assessment frame-
work that can calculate partial guessing entropy estimates, and
generate dictionaries that crack 23.13% or more gestures in
online attacks (within 20 guesses). To improve the entropy of
gesture passwords, we designed novel blacklist and lexical policies
to, respectively, restrict and inspire gesture creation. We close by
validating both our security assessment framework and policies
in a new crowd-sourced study (N=4000). Our blacklists increase
entropy and resistance to dictionary based guessing attacks.

I. INTRODUCTION

Smartphone password schemes like screen lock patterns

and PINs suffer from the security issues that emerge from

the biased ways in which users choose their passwords: they

select easy-to-remember and quick-to-draw lock patterns [1]

and PINs [2] that are also easy to guess. Free-form gestures

are a potentially fast and secure way of authenticating users

to smartphones that may address the problem. Rather than

being constrained by a fixed grid or keypad layout and small

password space (e.g., 389,112 possible lock patterns), users

can freely draw one or more strokes on a touchscreen [3]

or bespoke input surface [4]. The resultant stream of co-

ordinates can be matched against stored templates, using

mature algorithms [5], to grant or restrict access. The use of

gestures conveys numerous advantages: the theoretical number

of possible gestures is extremely large [3] and; gesture input

may require less visual attention than input based on selecting

buttons or targets [6] making it particularly suitable for mobile

or wearable scenarios where users may be working on small

displays [7] or busy and engaged in other dominant tasks [8].
While the potential benefits of gesture passwords are well-

established, their applicability for use as a smartphone un-

lock scheme and their inherent security and usability remain

unclear. One issue is the small size of existing data sets –

prior work has collected between 22 [9] and 345 [10] different

predefined or user-proposed gestures from 34 to 45 users and

the largest analysis to date [11] combines two proprietary

data sets, captured in different studies/settings, to yield a

corpus of 529 different gestures in total. This contrasts to

existing analyses of passwords [12], PINs [13] and pattern

locks [14] which based security assessments on data sets of

several thousand examples. In light of these precedents, we

argue it is necessary to complement existing claims about the

high entropy of gesture passwords, based on controlled small

scale studies in the lab or field, with the data and analysis

from a larger online study of gesture passwords.

A related problem is a lack of established metrics for

assessing security – unlike the exact comparisons possible

with passwords and PINs, gestures are matched via a simi-

larity measure (e.g., cosine [15] or Dynamic Time Warping

(DTW) [16] distance). There are currently no methods for es-

tablishing common security metrics such as guessing entropy

for gesture data sets, making it hard to contrast gestures against

other authentication methods. Researchers have instead made

security assessments based on, for example, calculations of

Equal Error Rate (EER) [9], [3] or via resistance to manual [3],

[17] or brute-force guessing attacks [11]. Improving the quality

and scale of gesture data sets is an integral current requirement

for work in this area; doing so will enable development of

new forms of security analysis, provide a more comprehensive

assessment of the security of the basic technique, and provide

raw evidence required to determine the suitability of gesture

passwords as a lock scheme for smartphones.

This paper addresses these limitations and evaluates the fea-

sibility and practicality of using gesture passwords as a main

authentication technique on smartphones. In this scenario, we

constrain gestures to involve single strokes by single fingers

on a small screen region, similar to graphical pattern locks [4].

From this starting point, we describe a multi-stage study. We

first capture the largest extant sample of gesture passwords

(N=2594) from crowd workers. We analyze this to extract key

security metrics, such as an EER for the gesture matching

threshold, and as the basis for developing both a dictionary of

the 20 most common gestures (Android only allows 20 con-

secutive fail attempts), and an automated entropy assessment

algorithm. We show the dictionary is effective at cracking the

gesture passwords: 54.18% to 58.37% at the EER threshold

value and 23.13% to 31.49% with a stricter threshold derived

from closely related prior work [10]. This indicates user-

chosen gesture passwords, just like other unlock schemes, are

insecure against dictionary-based password guessing attacks.



To help users select stronger gesture passwords, we intro-

duce three novel policies: a lexical policy that involves present-

ing words that can inspire gestures, and two blacklist policy

variants that block users from choosing password gestures

that match popularly used gestures. We capture and analyze

a new crowd-sourced data set (N=4000) and compare the

usability and security of gestures generated with these policies

against those generated in a standard condition. The results

show that while our lexical policy is ineffective, our blacklist

policies increase both the entropy of gesture passwords and

their resistance to future dictionary based guessing attacks:

cracking as few as 14.93% of gestures when a consolidated

blacklist policy was enforced. Usability trade-offs were small

compared to the baseline policy: between 1.1 and 1.7 seconds

slower in mean authentication times, and approximately 3%

lower in 1-day recall tests (memorability).

The contributions are: 1) the largest data set of gesture pass-

words – over both studies 6594 unique participants produce

more than 67 thousand examples of 9188 different gesture

passwords. 2) a novel security assessment framework for

gesture-based authentication that can generate a dictionary of

representative gesture passwords, measure cracking rates, and

calculate the entropy of user-chosen gesture passwords. 3)

novel blacklist and lexical policies for improving the entropy

of the gesture passwords users create. Finally, 4) an assessment

of these policies in terms of both usability (over multiple recall

sessions) and our newly developed security metrics.

II. RELATED WORK

The use of gestures to authenticate an individual has a long

history; a written signature is, fundamentally, a 2D gesture.

With the emergence of large, high resolution touch-screens

on mobile devices, researchers began to explore how to apply

gesture authentication to this new space. Early work focused

on the biometric properties of gesture input, suggesting that

how users stroke the screen while producing single [18] or

multi-touch [9] gestures can provide identifying information

with an accuracy of between 77% – 90% for a single input.

A. Gesture Passwords

More recent work has focused on gestures as passwords in

and of themselves – when the strokes made, rather than how

they are performed, is the data examined to authenticate a

user [3]. Various aspects of performance have been examined

in this space. One prominent strand of work has focused on

gestures that contain one or more finger strokes, with the

requirement that multiple finger-strokes overlap temporally,

and examined optimal algorithms to recognize gesture pass-

words [5] and the usability and memorability of gesture pass-

words compared to text passwords after periods of one hour,

one day and one week [10]. The authors conclude that gestures

passwords achieve levels of usability equal to or exceeding text

passwords – for a set of 91 participants creating and recalling

pairs of gesture passwords, mean creation times of 69 seconds,

recall rates of 89.6% and recall times of 16.49 seconds were

indistinguishable from text password performance. We also

note that current touch screen gesture authentication work

focuses on input over the whole screen; no existing work

studies the use of gesture passwords on smartphones with a

more limited drawing canvas. We focus on the feasibility of

using gesture passwords as an alternative graphical password

(lock) scheme on smartphones – as such we restrict input to

the small phone screen regions typical in phone lock systems.

B. Gesture Password Security

Although the usability of gesture authentication schemes

can be assessed in much the same way as any other form

of password, assessing their security is more difficult. This

is fundamentally because, unlike traditional password sys-

tems, matches between stored gestures and those entered by

users (or attackers) is achieved not through an exact and

precise comparison but by exceeding a threshold value on

a similarity measure such as cosine distance (used in the

Protractor recognizer [15]) or DTW distance [18], [16]. The

key consequence of this approach is that there are many

possible valid variations of a gesture that would authenticate

a user and that different matching algorithms [5] and match

thresholds (or number of template gestures [3]) will yield

different levels of performance in terms of the proportion of

genuine or malicious gestures that are confirmed as a valid

match. In practice, this means that while a naı̈ve analysis

of the entropy of gesture passwords, defined as the number

of possible strokes that can be made on a canvas of some

given resolution, is extremely high (e.g., 100 bits for 16 point

gestures drawn on an 8 by 9 grid [10]), the practical entropy

of the space is likely much lower, as multiple strokes within

this space will match one another. Unsurprisingly, as with

other forms of password, users are biased to produce specific

gestures more frequently than others [11].

Reflecting these problems, prior research assesses the se-

curity of gesture authentication schemes through alternative

approaches. A common one is empirical: gesture passwords

are attacked by either observers [3], [17], or via automated

processes such as through random geometric guesses [5] and

their resistance to these attacks is contrasted against data for

baseline cases such as passwords. Recent automated attacks

exploit information extracted from gesture data sets to improve

performance: the symmetry of gestures and a dictionary of

commonly selected gesture passwords [11]. Although it is not

applicable to an online attack scenario (with guessing attempt

limits), this attack was shown to be highly successful if used

for an offline attack – crack rates were between 47.71% and

55.9% with 109 guesses. We note that the large sets of gesture

password samples that would be necessary to generate and

validate attack dictionaries do not currently exist.

C. Password Policies

Password selection policies, such as mandated minimum

length or required special characters, can help users create

stronger passwords [19]. However, policies that are effective

at improving password entropy can negatively impact us-

ability [20]. System-assisted password selection policies [14]



can be effective. They try to guide users to create more

secure passwords – significantly improving security with small

compromises in recall rates and unlock times. Currently, only

limited work has examined password selection policies for

gesture passwords – Clark et al. [21] proposed three policies

that request users to create gestures that are fast, random or

use multiple fingers. Evaluations indicate they had limited

impact on security and may have negatively affected usability.

Given the importance of password policies in ensuring the

security of other forms of password system, we identify the

development of policies that can help users select more secure

gesture passwords as an underdeveloped area of research.

III. SECURITY EVALUATION FRAMEWORK

Here we discuss the challenges in measuring the security of

gesture passwords, and propose a novel evaluation framework

for gesture password security. Our framework consists of the

following three methods: (1) configuring gesture algorithm

parameters based on EERs, and measuring false acceptance

rates as the first security measure; (2) measuring entropy of

gesture passwords through an n-gram Markov Model; and (3)

measuring the resistance of gestures to a novel clustering-

based dictionary attack. This framework is used later to

compare the security of our gesture selection policies.

A. Online Attack Model for Smartphones

To mitigate online guessing attacks on smartphones, only k
consecutive fail unlock attempts are allowed (e.g., k = 20 for

Android and k = 10 for iOS). That is, after k unsuccessful

attempts, an attacker can no longer try unlocking the target

device. Thus, the attacker’s goal is to unlock a target device

within k guessing attempts. If the attacker has no information

about the gesture password being used, the best attack strategy

is to try the top k most commonly used gesture passwords

first. If a gesture password data set is available, the attacker

could use a data-driven approach to build this list of top

k gesture passwords, and try them sequentially to unlock

victims’ devices. In the next section, we explain why building

a guessing dictionary for gesture passwords is challenging.

B. Challenges in Evaluating Security

We identify two key problems with assessing the security

of gesture passwords in response to online attacks. The first

relates to modelling the gesture space – as the theoretical

space is very large, it is an open question how to best

identify common gesture forms. Prior work has proposed

manual classification of gestures into broad categories (e.g.

digits, letters, geometric shapes [11]) to support offline attacks.

There is no prior work exploring automated approaches to

this problem, such as n-gram models or Probabilistic Context-

Free Grammars (PCFG) [22] capable of computing probability

scores for all possible gestures, or clustering algorithms that

group gestures in a set based on their similarity. Due to this

lack, we believe that exploring mechanisms to automatically

determine common gesture classes is an important first step

to support online attacks on gesture authentication systems.

The second relates to the fact that multiple possible vari-

ations of a gesture, effectively multiple different gestures,

will authenticate any given user. This is because thresholded

distance metrics, as opposed to exact similarity, are used

to determine matches between entered gestures and stored

templates. To create maximally effective dictionaries for online

attack, it is therefore important to be able to generate or select

highly representative gesture exemplars from common gesture

classes. Prior online approaches to this problem [11], focused

on making large numbers of diverse guesses by distorting

randomly selected gesture examples, do not apply to an online

attack scenario in which the maximum number of guesses is

low (e.g., 10 or 20). A viable online attack against gesture

passwords must be able to identify optimal guesses for each

gesture class. In the next sections, we explain how our gesture-

tailored n-gram model and clustering-based dictionary have

been designed to address these challenges.

C. Preprocessing and Equal Error Rates

Prior to performing recognition or other analysis, gestures

need to be normalized. We follow recommendations from prior

work [5] and apply scale and position normalization, making

these proprieties effectively invariant – two gestures depicting

similar leftward arrows should therefore be matched regardless

of any differences in the scale or location of the strokes on

the canvas. We do not apply rotation normalization, making

gestures rotation variant – a leftward arrow would therefore

not be matched to an otherwise similar rightward arrow.

There are many existing algorithms for gesture recognition.

Our framework applies two recognizers that have been widely

used in recent studies of gesture passwords: Protractor [3],

[10] and Dynamic Time Warping (DTW) [11]. We describe

the configuration of these algorithms below:

Protractor: We used the reference $N Protractor imple-

mentation [23]. Gestures are compared by the inverse cosine

distance between their vectors. We configured the recognizer

to allow only single stroke gestures and to allow gestures to

be matched on drawn shape rather than stroke sequence (i.e.,

to use original and inverted stroke sequences as templates).

Rotation invariance was applied at the default thresholds: +-

30◦ degrees for the initial stroke, defined as 1/8 of the gesture

length, and 45◦ for the gesture as a whole.

DTW: We used a standard DTW implementation based on

a Euclidean distance measure [16]. No additional processes

are required to maintain rotation variance.

A key final normalization of gestures is re-sampling: both

protractor and DTW algorithms require that gestures being

matched are the same size. They meet this constraint by re-

sampling all strokes to a preset size; optimal values for this

size parameter vary depending on the gesture set. As in prior

work [11], we determine optimal values for this parameter by

creating multiple sets of re-sampled gestures and examining

Equal Error Rates (EERs). Specifically, we create 12 gesture

sets with re-sampled lengths of between 8 and 96 points, in

steps of 8. We calculate EERs by adapting processes described

in Sherman et al. [3]. For a given data set, False Rejection



Rates (FRRs), which measure the proportions of users’ gen-

uine gestures that are rejected by a gesture algorithm, are

calculated by matching different examples of each individual’s

gestures against each other. False Acceptance Rates (FARs),

which measure the proportion of others’ gestures being mis-

classified as users’ own, are based on matching an individual’s

stored gesture template against those from all other individu-

als. FARs reflect the rate at which attackers might succeed in

guessing users’ gestures. By calculating FRRs and FARs for

a range of distance threshold values, we can derive an EER

at their intersection. Re-sampling size is then set to minimize

EERs across the data-sets being examined.

D. Entropy Analysis with n-gram Markov Model

Measuring the guessing entropy of passwords is commonly

achieved by analyzing the probability distribution of real-

world passwords. However, as we can only collect samples

representing a small portion of the theoretically possible space

of gesture passwords, we need to develop a probabilistic

password model [22] that uses collected samples to estimate

the probability distribution of all gesture passwords. We do this

by developing n-gram Markov models that can calculate the

probability of each gesture password. n-gram Markov models

are an appropriate technique as they have successfully been

used to estimate the probability distribution of other graphical

password schemes [1], [14]. In an n-gram Markov model,

the probability of the next stroke in a graphical password is

calculated based on a prefix of length n. The idea is that

adjacent strokes in user-chosen graphical passwords are not

independent, but follow certain high probability patterns.

In order to produce an n-gram model, based on sequences

of discrete tokens, from a continuous two-dimensional gesture

representation we need to design a discretization process that

minimizes error. Our multi-stage process is described below

and illustrated in Figure 1.

Discretization: First, we apply Douglas-Peucker (DP) line

simplification [24] to each gesture. We examine the relation-

ship between the DP simplification tolerance value and the

number of simplified strokes, selecting the knee point as the

optimal value. Based on the resultant set of simplified strokes,

we create discrete symbols based on stroke length and stroke

angle. To identify a mapping that minimizes error, we consider

multiple divisions of stroke length (dividing the full range of

all observed stroke lengths into 2, 3 or 4 equally sized length

regions) and angle (into 6, 8, 10, 12 and 14 equally sized

angular regions). This leads to 15 differently sized models

containing from between 12 (2 lengths by 6 angles) and 56

(4 lengths by 14 angles) possible symbols, roughly equivalent

to the number of symbols in a pattern (9 points) or PIN (10

symbols) and an alphanumeric password (about 95 symbols).

In addition, we also consider two possible phases for the

angular regions: with an origin at 0◦ and an origin at half

the region angular width (e.g., 22.5◦ if there are 8 regions).

We refer to these phases as aligned and offset. This leads to a

total of 30 different approaches. Following this transformation,

we are able to represent each gesture as a series of discrete

symbols each representing a single stroke.

Generation: To estimate the probability of any possible

gesture password from a set of gesture samples, it is es-

sential to develop a probabilistic password model (e.g., n-

gram Markov model) that effectively represents the probability

distribution of real-world gesture passwords. Therefore, we

build a number of reasonable n-gram Markov models across

various discretizations and n-gram Markov parameters. Using

a 5-fold process, we create a set of nine 2-gram models using

each of the 30 discretizations: 270 models in total. Each set

explores a grid search over two additional variables: smooth-

ing method (“add-1 Laplace smoothing”, “add-1/(number of

symbols) Laplace smoothing” and “Good-Turing smoothing”)

and; exclusion policy for short gestures. Specifically, we create

models that 1) include all gestures, 2) exclude single stroke

gestures, and 3) exclude single and dual stroke gestures. The

use of smoothing methods enables n-gram models to cover

rare n-gram cases. We explore excluding extremely short

gestures as their probability may be over-weighted, potentially

biasing the n-gram models. In each model, we apply end-point

normalization to ensure the sum of probabilities of all possible

gesture passwords is 1. We opt not to examine 3-gram models

due to the difficulty of collecting a data set large enough to

yield an acceptably low proportion of unseen cases.

Selection: To select reasonable models, we apply three cri-

teria. The first two rely on comparisons between original user-

chosen gestures and gestures derived from the discretization

process and n-gram Markov models. In order to make these

comparisons, we reconstitute gestures from their symbolic

forms in the models. This is done by creating a contiguous

sequence of strokes, with each stroke’s length and angle

set to the central values of its length/angle segment – see

steps 6 and 7 in Figure 1. The first criteria based on this

process is the crack rate using k guesses at a specific distance

threshold t. We believe models achieving a higher crack

rate more accurately reflect the probability distribution of the

collected samples. The second criteria is the similarity between

each original user-chosen gesture and its discretized n-gram

representation. For a given n-gram model, we calculate this

as the proportion of gestures that are more similar than a

specific distance threshold t. We believe models in which

gesture representations are more similar to the originals will

be more accurate. The third criteria we apply is the model

completeness. We surmise that models in which we observe

a larger proportion of possible n-gram cases will be more

accurate. We calculate these values for all models. Models

should be selected for further study through manual inspection

to achieve a good balance of performance across these criteria.

Optimization: Any discretization method for n-gram

Markov models yields degenerate cases (e.g., strokes on an

edge). Thus, to improve n-gram Markov model performance,

we need to handle degenerate cases in each selected model. We

do this during discretization of strokes into length and angle

categories by treating cases within b% of boundary edges as

ambiguous and incrementing the n-gram sequence frequency
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Fig. 1. Overview of discretization process from a gesture (step 1) to angle-region symbols for building n-gram Markov models (step 5) and the gesture
reconstitution process for evaluating them (steps 6 and 7). Illustration uses a simple model with 2 length and 4 angle discretization regions.

of both the actual and adjacent length or angle region by i
and j respectively, where the sum of these values is always 1.

This reflects the fact that strokes near the discretization region

boundaries may be erroneously (or noisily) classified. For each

selected n-gram Markov model, we perform a grid search over

values of b in the range 1% to 10% for angle and length with

both i and j set to 0.5, thus generating an additional 100 n-

gram models. The final model is selected based on balanced

improvements to the metrics defined above.

Calculating partial guessing entropy: With the best per-

forming n-gram Markov model(s), we calculate partial guess-

ing entropy to evaluate the security of the gesture passwords.

Partial guessing entropy estimates [25] are useful because

real-world attackers might only be interested in cracking

just a fraction of an entire password set. This is a popular

technique for estimating the average number of trials needed

to successfully crack a fraction (α) of an entire password set.

We report these data in terms of “bits of information.”

E. Clustering-based Dictionary Attack

To evaluate the security of gesture passwords against guess-

ing attacks, we introduce a novel dictionary attack based on

clustering to group gestures according to the similarity of their

shape. The goal is to identify common gesture classes and,

within each class, select the most representative gestures to

support guessing attacks. We use a 5-fold process as follows:

Calculate distances: We calculate distances between all

gestures in the training set using a gesture distance metric

(e.g., Protractor or DTW). This data is identical to the FAR

calculation described in Section III-C.

Cluster gestures and select representative examples: We

apply the affinity propagation clustering algorithm [26] to

these distances. The key advantage of affinity propagation

over alternative approaches is that it is an exemplar-based

clustering algorithm that identifies representative examples (in

our case, typical gestures) within the data-set. We believe this

can be useful for creating a dictionary of gesture passwords.

The results of this algorithm are a set of clusters containing

similar gestures. Each cluster has a specific gesture at its

geometric center. We argue this central gesture will be the

optimal representative gesture for the cluster it is derived from.

Rank gestures and create dictionary: We order the clus-

ters by size and create a dictionary of center gestures of the

largest k clusters. We evaluate the fit of clustering model by

examining the number of clusters generated and the mean
inter-cluster distance, defined as the mean distance between

all gestures in each cluster. A larger number of clusters

likely reflects a more diverse gesture set. Similarly, clusters

containing gestures that are more distant from one another

can be assumed to contain gestures with more diverse shapes

– center gestures may therefore be less representative of the

full cluster contents.

Perform dictionary attack: With the dictionary of k center

gestures, we match all test set gestures against the dictionary.

The crack rate is the proportion of test set gestures that match

at least one gesture in the dictionary. We report crack rates

for a continuum of distance thresholds and/or corresponding

FRRs. This serves as the primary metric for evaluating the

security of a set of gesture passwords. If different conditions,

models, algorithms or policies are being compared, the crack

rates may also be tested for significant differences using

contingency tests. Testing or other comparisons should take

place at standardized FRR levels such as 2.5%, 5% or 10%,

or those used in relevant prior literature.

IV. FIRST STUDY: GESTURE PASSWORD SECURITY

We designed, implemented and executed an on-line study

to capture the largest set of password gestures to date. The

gestures were captured in a homogeneous study protocol and

outside traditional lab or university environments. The goals of

capturing this data set were to (1) move beyond the small scale

security analyses enabled by prior research and remove biases,

such as the experimenter effect or a lab based population bias,

from the data, (2) measure the security of gesture passwords

using the proposed framework, (3) gauge the effectiveness of

the framework, and (4) acquire a large set of gesture samples

to build blacklist policies. The ethical aspects of the study

were approved by the host university IRB.



A. Gesture Recognizer

During data capture, we used Protractor, configured as

described in Section III-C, as it is mature and has been

deployed in a number of closely related studies [3], [10].

Protractor’s similarity measure is the inverse cosine distance:

when two gestures are compared, larger scores indicate greater

similarity. While data about specific thresholds used in prior

gesture authentication systems is scarce, one prior study with

Protractor uses a threshold of 2.0 [10]. Considering our goals,

we opted to set Protractor’s matching threshold to be more

permissive: 1.0. We explicitly used this permissive threshold

in order to capture a greater proportion of the raw gestures

that participants produce; as our study protocol used gesture

matching to ensure validity of the input gestures (see next sec-

tion), stricter thresholds that increase the difficulty of matching

gestures might serve to filter or restrict the gestures that

participants were able to create during the study. A permissive

threshold ensured participants entered meaningful gestures

that resembled each other while minimally constraining the

form and type of those gestures. This best met the goals

of our study. We also note this is a typical approach in

empirical work to capture gestures – rather than constrain

examples to fit a given algorithm during collection, gathered

examples are considered as valid gestures that can be studied to

develop optimal recognition algorithms in subsequent offline

analysis. In this way, the use of a permissive threshold allows

capture of a valid but minimally restricted set of gestures

that can support the broadest possible set of future analyses

– by, for example, examining the impact of increasingly strict

thresholds or applying different comparison algorithms.

B. User Study Design

The study was implemented as a website and participants

were recruited via Amazon Mechanical Turk (MTurk). The

MTurk listing summarized study activities, requested partici-

pants to complete it on a mobile device and provided both a

link and a QR code to the study site. We screened participants

who arrived at the study site as to whether they were on

a mobile device or not – we checked for a touchscreen

device with a portrait orientation, common criteria for browser-

based mobile device detection. Participants not satisfying these

criteria were reminded to complete the study on a mobile

device and again provided with the study link and QR code.

Participants accessing the study site on a mobile device were

first presented with instructions requesting they create a pass-
gesture they would use to secure access to their mobile device.

Two incentives were provided to encourage the creation of

secure, memorable gestures. Firstly, we informed participants

they would also create an attack-gesture that would be used

to guess the gestures of other study participants; similarly,

the attack-gestures of other study participants would be used

to guess their own pass-gesture [1]. If these guesses were

successful, they would not receive compensation. Secondly,

we told participants they would be asked to recall their pass-

gesture up to one day after creating it.

(a) Create (b) Match (c) No match

Fig. 2. The first study running on a Samsung Galaxy 8 Android mobile phone
in Google Chrome. Figures show limited input region (following Android
pattern lock) and pass-gesture creation after an example gesture has been
drawn (a) and pass-gesture confirmation screens for gestures that match (b)
and fail to match (c) the example gesture (a).

Participants then moved on to a screen that asked basic

demographics (handedness and categories for age, educational

level, occupation and ethnicity). They then progressed to a

screen where they first created and, on a subsequent screen,

confirmed their pass-gestures. Confirmation pass-gestures were

required to match creation pass-gestures, using the Protractor

recognizer configured as described in Section IV-A. A failure

to match these gestures led to both being deleted and the pass-

gesture set up process starting again. Participants were also

able to cancel the set up process at any stage, resulting in

a similar deletion of the templates and restart of the process.

Once gestures had been matched successfully, and participants

were satisfied, they tapped on a button to finalize their gestures

and move on in the study. This interface was closely modeled

on the pattern lock set up process on Android mobile phones

and can be seen in the screen shots in Figure 2. We note

the input region used was limited, following typical phone

pattern lock and PIN implementations. This helped ensure the

input region was accessible to users regardless of their physical

size, handedness and phone grip – the area is reachable by

the thumb of most users in a single handed grip, a practical

constraint for any realistic phone unlock system.

The next stage of the study involved a similar process

of gesture creation and then confirmation for the attack-

gesture. Additionally, attack-gestures were matched against

pass-gesture templates; if matched, participants were informed

attack-gestures needed to differ from pass-gestures and the

attack-gesture creation process was restarted. The attack ges-

ture served as a distracter task to clear each participants short-

term memory. Finally, participants completed a recall task for

their pass-gesture. They had a maximum of five attempts to

match either their creation or confirmation pass-gesture. The

limit of five was derived from the Android security system –

after five incorrect entries, users need wait 30 seconds before

making further attempts. After either a successful match or

five failures, the study terminated with a screen informing

participants of their correctness in the recall task, by thanking

them for them time and with a numerical code that enabled

them to register the study as complete on MTurk.



C. Measures

For each participant we recorded the following measures.

All measures relating to gesture creation and confirmation

were logged for both pass- and attack-gestures; measures for

recall only relate to pass-gestures.

All gestures. We logged all entered gestures at all phases

of the study. Gestures were tagged with the study stage and

participant ID and recorded at the native resolution (both

temporal and spatial) of the participant’s device. Additionally,

we tagged all final or correct creation, confirmation and recall

gestures. If a user failed to recall their pass-gesture within five

attempts, no correct recall gesture was recorded.

Setup time. We measured the time to create and confirm

gestures from first presentation of the gesture creation screen

through to when the confirmation gesture was accepted by the

user via a explicit button press to move on with the study.

Setup cancels. We logged the number of times the gesture

set up process was intentionally canceled by a user wishing

to revise or change their gesture.

Setup failures. We stored the number of times that confir-

mation gestures failed to match creation gestures.

Recall rate. We logged the number of participants who

failed to recall their pass-gesture within five attempts.

Recall attempts. We logged the number of recall failures

regardless of final success or failure in the overall recall task.

These failures were due to either matching one of the attack-

gestures or failing to match any gesture.

Recall time. For those participants who successfully re-

called their pass-gestures, we logged the recall time from

the first presentation of the gesture entry screen through to

successful entry of the gesture.

D. Participants

In total, 2619 unique Amazon Mechanical Turk workers

completed the study, each rewarded with 0.25 USD. On

manual inspection, we removed 25 participants from the set, as

they created essentially identical (and highly unique) gestures

in close temporal proximity – we assumed they were created

by a single individual with access to a large number of separate

MTurk accounts. The final gesture set thus contains data

from 2594 separate MTurk workers. Participants completed

the study, from initial gesture creation through attack gesture

creation to final recall entry, in a median of 47 seconds,

corresponding to a median hourly wage of 19 USD.

E. Usability Results

1) Demographics: The majority of participants identified as

white (56.32%), Asian (18.47%), Hispanic (9.48%) or black

/ African-American (7.94%) and fell in the 18-24 (31.8%),

25-34 (46.72%) or 35-44 (15.42%) age groups. Most were

educated post-graduate (13.61%), college (49.46%) or high

school level (33.73%) and they worked in a wide range of

fields; the largest group were students (15.38%).

2) Setup Cancels, Failures and Time: Data for setup of

pass- and attack-gestures is shown in Table I. Due to positive

skews in the majority of data we report means, SDs and

medians for all measures. We note the 24.38 seconds setup

time is substantially below figures in the literature of gesture

passwords – for example Yang et al. [10] report a setup time of

69 seconds for their multi-finger gesture passwords. The most

likely explanation for this variation lies in the different partic-

ipant populations (MTurk workers vs lab study participants)

and our focus on single finger, single stroke gestures over the

more complex multi-finger or multi-stroke gestures studied

by Yang et al. [10]. Although shorter than prior free-form

password systems, these setup times remain representative of

online studies of other graphical authentication schemes – in a

recent crowd sourced study of pattern locks, mean setup times

for a standard system are reported to be 22.05 seconds [14],

broadly similar to data reported here. We interpret this to mean

that users both appropriately engaged with the gesture creation

task, and were also able to create gestures at reasonable speeds.

3) Recall Success Rate and Time: The overall recall rate

in the study was 92.1% (95% confidence interval: 91.05%-

93.13%). From the 2594 participants, 205 failed to enter their

pass-gestures within five attempts. We divided participants

into two groups depending on their success in the recall task

and present their data in Table II. Once again, due to the

the simpler format of our gestures, recall times are quick

(5.11 seconds) compared to those reported in prior studies

of gesture passwords (16.49 seconds) [10]. However, recall

rates are low – for short-term recall, figures of 98.9% have

been previously reported [10]. Examining the data in detail,

its clear that the attack gesture task strongly impacted recall

rates – for participants who recalled their pass-gestures, 68%

of errors involved entering a match for their attack-gesture;

for participants who failed recall this figure was 60%. We

also note that, from the set of 2389 participants who correctly

recalled their gesture, the number of attempts in which an

entered gesture failed to match either pass- or attack-gestures

was 0.11 – this figure corresponds closely to the number of

errors (12.1%) recorded in an in-the-wild study of Android

pattern locks [27]. We argue this suggests that the somewhat

reduced recall rates recorded in this study are due to the attack

gesture distracter task rather than a reflection of fundamental

user performance during gesture authentication recall.

F. Security Results: Preprocessing and EER

To evaluate the security of the collected gesture passwords,

we apply methods from the initial stage of our framework (see

TABLE I
SETUP CANCELS, FAILURES AND TIMES IN THE FIRST STUDY (μ: MEAN,

σ: STANDARD DEVIATION, μ̃: MEDIAN)

Pass-Gesture Attack-Gesture
Measure (units) μ σ μ̃ μ σ μ̃
Setup Cancels (#) 0.6 2.58 0 0.14 0.64 0
Confirm Failures (#) 0.14 0.52 0 0.77 1.88 0
Setup Time (s) 24.38 30.13 15.52 17.82 22.08 11.48



Section III-C). We first studied and described the gestures.

To gain an understanding of the types of gesture produced,

we adapted an existing categorization of gesture passwords

from prior work featuring seven categories: digits, geometric

shapes, letters, math functions, math symbols, music symbols,

and special characters [11]. Two independent raters manually

examined the same random 10% of the gestures, categorizing

each according to this prior scheme and extending it where

necessary. They then discussed their ratings, agreed on four

additional categories – compound, cursive, iconic and other

– and applied this new scheme to a second random 10% of

the gestures. More details on these categories and the results

from this process are shown in Appendix A. The results are

broadly similar to those in a prior study [11], suggesting that

the gestures captured in this work are reasonable. In addition,

Appendix B shows the distribution of all raw points input in

creation gestures, binned into three by three grids with start

and final points separated out. The data suggests that, as with

other forms of graphical password such as patterns [14], users

tend to start strokes from the top left of the available drawing

area and, to a lesser extent, finish them in the bottom right.

In contrast, points entered during the course of an ongoing

gesture were more central – less prevalent around all edges

(and particularly corners) of the drawing area.

We measured FRRs from each user’s creation, confirmation

and, if present, recall gestures. We generated FAR data from

the full set of all users’ creation gestures. For Protractor, EERs

improved consistently with increasing re-sampling sizes, so

we opted to set the re-sampling size to 96 (the default for

Protractor’s reference implementation). For DTW, minimum

EERs were observed when gestures were re-sampled to 24

points, slightly larger than the 16 point optimal value reported

in prior work [11]. At these values, the EER for DTW is 3.59%

(AUROC 0.984 and corresponding to a DTW distance of 18.4)

and for Protractor 4.14% (AUROC 0.974 and corresponding

to an inverse cosine distance of 1.25). Figure 3, shows the

ROC curves contrasting these algorithms. We note the EER

value for Protractor is somewhat lower than reported in the

literature – Sherman et al. [3], for example, report 7.07% and

15.97% with Protractor for two different data sets and when

matching against two templates. Examining their data in detail

suggests the reduction we observe is due to a lower FRR,

rather than any change in FAR. This suggests the difference is

predominantly due to our decision to conduct the study with

a permissive match threshold (1.0) to gather a greater range

of user inputs. While no specific match threshold is reported

TABLE II
RECALL FAILURES DUE TO MATCHING ATTACK GESTURES (ATTACK

ENTRIES) OR NO GESTURE (NO MATCH ENTRIES) AND RECALL TIMES IN

THE FIRST STUDY (μ: MEAN, σ: STANDARD DEVIATION, μ̃: MEDIAN)

Successful Recall Unsuccessful Recall
Measure (units) μ σ μ̃ μ σ μ̃
Attack entries (#) 0.23 0.66 0 3 1.81 3
No match entries (#) 0.11 0.39 0 2 1.81 2
Recall Time (s) 5.11 5.52 3.12 N/A N/A N/A

Fig. 3. Receiver Operating Characteristic (ROC) curves contrasting relative
FRR and FAR performance for Protractor and DTW recognizers. The Pro-
tactor EER is 4.14% (AUROC: 0.974) at a threshold value of 1.25 and the
DTW EER is 3.59% (AUROC: 0.984) at a threshold value of 18.4.

in [3], if we assume use of a stricter value, such as the 2.0

used in related work [10], a greater number of false rejections,

and correspondingly, a higher EER would be expected.

G. Security Results: Entropy Analysis

We then followed the entropy analysis processes in our

framework. We created 270 different 2-gram models and

applied selection criteria to choose a subset of models for

optimization, as described in Section III-D. We used DTW

to calculate these metrics due to this algorithm’s improved

performance over Protractor in terms of EERs, and set the

threshold t to the value corresponding to 10% FRR, one of

the standardized FRR levels introduced in our assessment

framework (see Section III-E). Appendix C includes results

in terms of our selection criteria for all models achieving a

crack rate of greater than 10%. We choose three models for

optimization – see Table III. The first achieves the overall best

crack rate and is based on discretization into two length and

ten angular regions (“2x10”). However, gestures reconstituted

from this model show a relatively low similarity to the original

user-chosen gestures, suggesting some information in complex

strokes may be lost. Accordingly, we selected two additional

models with increasing numbers of either length (“3x10”)

or both length and angle (“4x12”) discretization regions that

combine high crack rates with improvements in similarity

and small reductions in model completeness. The outcomes

from the optimization process are also depicted in Table III.

Appendix D shows the optimized boundary region sizes and

distribution of start, center and final strokes in these three

models. These figures show that initial strokes tend to involve

vertical and/or right movement (matching the gesture start

locations shown in Appendix B), while central strokes are

short (likely due to users drawing curves) and final strokes

have a relatively even distribution. Based on a review of this

material, we believe that the model based on discretization

into three length and ten angle regions (3x10) provides a

well balanced combination of high crack rate, close accuracy

to the original user-chosen gestures, and high proportion of



TABLE III
SELECTED n-GRAM MODELS AFTER OPTIMIZATION SHOWING CRACK

RATE (CR), SIMILARITY (SM) AND COMPLETENESS (CP) METRICS.

Name Model Parameters Model Performance
Len Ang Phase Smoothing Excl. CR SM CP

2x10 2 10 offset Good-Turing single 18.24% 62.72% 94.78%
3x10 3 10 offset Add-1 dual 16.85% 86.16% 90.73%
4x12 4 12 offset Add-1 dual 15.46% 84.70% 73.67%

TABLE IV
COMPARISON OF PARTIAL GUESSING ENTROPY (“BITS OF INFORMATION”)

WITH CRACKING FRACTION (α) ACROSS PASSWORD DATA SETS.

Dataset
α

0.1 0.2 0.3 0.4 0.7 1.0
2x10 Pass-gestures 6.29 8.39 11.39 13.31 16.11 17.98

3x10 Pass-gestures 6.97 9.69 13.26 15.41 18.57 20.68

4x12 Pass-gestures 7.47 11.27 15.94 18.40 21.68 23.98

4-digit PINs [2] 5.19 7.04 8.37 9.38 11.08 11.83

Patterns [14] 5.04 5.82 6.54 7.19 9.20 12.71

observed n-gram cases. We note that the model based on

discretization into two length and ten angle regions (2x10)

may perform better in terms of crack rate when gestures in a

set are relatively simple.

Partial guessing entropy results from the three optimized

models, converted to “bits of information” are shown in

Table IV. The results of two additional data sets are included:

4-digit PINs [2], and screen lock patterns [14]. The results

indicate that gestures, across all three n-gram models, poten-

tially have higher entropy estimates compared to PINs and

patterns at different α levels. Although our n-gram models can

be further optimized in the future (to more accurately estimate

the probabilities of real-world gesture passwords), these early

comparisons provide some evidence that guessing gestures

might be more challenging compared to PINs or patterns. We

note the models show a steep rise in partial guessing entropy

levels between α values of 0.1 and 0.4. This likely reflects the

“weak subspace” of gestures [11] – the idea that a subset of

user created gestures (at low α levels) take simple forms that

are relatively easy to guess, while the remainder (encountered

at higher α levels) are more challenging.

H. Security Results: Clustering-based Dictionary Attack

We then applied methods from the third stage of our

framework: performing clustering-based dictionary attacks on

the collected gestures and measuring cracked rates. Following

the processes outlined in Section III-E, we generated clusters,

dictionaries and attack data for DTW and Protractor recogniz-

ers. We report data for the full gesture sets. Dictionaries are

shown in Figure 4. Protractor led to a total of 325 clusters

with a mean (inverse) inter-cluster distance of 4.69 for the

top 20 dictionary clusters. DTW resulted in a total of 290

clusters and a mean inter-cluster distance of 8.97 for the top

20 dictionary clusters. These thresholds are substantially more

permissive than EERs thresholds, indicating that, in general,

gestures in each cluster would be matched with each other

if EER thresholds are used as a criteria. This suggests the

clustering algorithm was effective at grouping similar gestures.

Protractor dictionary DTW dictionary

Fig. 4. Dictionaries created from clustering the full sets of pass-gestures in
the first study for both Protractor (left) and DTW (right).

Fig. 5. Proportion of cracked gestures with dictionaries at FRRs from 0%-
15% with Protractor and DTW recognizers in the first study. Vertical lines
show EER values for each recognizer.

As we are primarily interested in online attack on mobile

phone unlock screens, we used dictionaries generated from

training sets to guess gesture passwords when k = 20, the

default number of guesses before an Android device locks

out further attempts. The results, for both dictionaries and

recognizers, are shown in Figure 5. At thresholds correspond-

ing to EER values, the dictionaries are highly effective. They

crack between 54.18% (DTW) and 58.37% (Protractor) of

gestures. In general, fewer gestures are guessed with DTW

than Protractor, suggesting that future gesture authentication

systems should use DTW in preference. More generally, this

data also highlights that data-set wide EERs may overestimate

the security of gesture passwords – stricter thresholds need

be applied to create a viable system. The limited data on

thresholds used in prior work confirms this – a threshold of 2.0

with Protractor has been previously proposed [10]. In our data

set, increasing the Protractor threshold to 2.0 corresponds to

an FRR for genuine users of 11.54%, which would reduce the

effectiveness of the clustering-based dictionary attack against

Protractor from 58.37% to 31.49%. Applying a threshold

corresponding to the same 11.54% FRR to DTW drops the

performance of clustering attack from 54.18% to 23.13%.

For comparison, dictionary attacks performed on patterns

achieve between 13.33% crack rate in a real-world mobile

application [28], and 32.55% in an MTurk study [14] and real-

world pattern lock error rates, FRRs, are 12.1% [27].

We note our dictionary attacks are more effective than the

offline guessing attack reported in Liu et al. [11] – they crack

a comparable 55.9% of gestures using DTW but required

109 guesses. There are a number of reasons for this: the

gestures generated in more controlled settings may be more

complex, distinct and consistent [29] than those generated by

MTurk workers online (though which group generates content

more representative of genuine password gestures is an open

question), and the gestures used in the current work are inten-

tionally constrained to be simple single strokes in the small,



practical “screen-lock” region of smartphones rather than the

multi-stroke full-screen gestures that have been previously

studied [5]. However, the strength of the dictionaries likely

reflects the presence of a “weak subspace” [11] of gesture

passwords – a large subset of the gestures users create are

insecure due to, for example, their similarity to common

reference points such as letters, their simplicity or the tendency

for other users to create highly similar strokes. We identify the

lack of diversity in users’ gestures revealed by this analysis

as a major problem undermining the potential of gesture

passwords as a smartphone lock scheme.

V. SECOND STUDY: GESTURE SELECTION POLICIES

To increase the entropy of gesture passwords, we conducted

a second study exploring the impact of four policy conditions:

a standard baseline condition, similar to that used in the

first study; a novel lexical policy in which participants were

provided with words that could inspire their gestures; a novel

blacklist policy that prevents users from creating pass-gestures

matching those in a displayed dictionary and; a consolidated
blacklist policy with a refined set of blocked gestures. The

lexical, blacklist and consolidated policies were intended to

increase the entropy of the gestures participants generate by,

respectively, inspiring users to create more diverse forms and

restricting the use of dictionary items. We apply our security

assessment framework to data from this study to determine if

resistance to dictionary based attacks is improved; this work

also serves to further validate our framework. We also report

on usability outcomes from the policies over two recall study

sessions. The ethical aspects of the study were IRB approved.

A. Blacklist Policy Design

For the blacklist policy we created a dictionary consisting

of the representative gestures from the largest 20 clusters

of pass-gestures in the first study. We presented them to

participants and informed them they could not use these

gestures as their pass-gesture. We enforced this by testing

creation pass-gestures against the dictionary and generating

a policy violation error message if there was a match; this

policy explicitly checked for compliance. The dictionary is

only shown during the pass-gesture creation phase.

B. Consolidated Policy Design

The consolidated policy design used the full set of clusters

from the first study. We ordered the clusters by size and

extracted the central representative gestures. We then traversed

the ordered list to create a consolidated set of clusters by

matching each subsequent gesture against the set of those

already examined (using Protractor and the first study EER

value of 1.25). In the case of a match, the list cluster was

merged with the one in the consolidated set. If there was no

match, the list cluster was added to the set. After examining all

original clusters, we produced a consolidated dictionary from

the 20 largest clusters in the consolidated set. This process

aimed to produce a dictionary with minimal replication by

merging small clusters of similar gestures to create a more

representative set of final clusters and gestures. Beyond these

differences in dictionary generation, the consolidated policy

was identical to the blacklist policy in how it was presented.

C. Lexical Policy Design

The lexical policy displayed words, which users can update,

during pass-gesture creation and indicated participants can

use these terms to inspire their gestures. The words are

shown only during the initial gesture creation and not stored

with the gesture templates or intended to serve as mnemonic

cues or “gesture hints.” The policy resembles prior gesture

password policies [21] in some ways: it is not enforceable

and seeks to provide open-ended guidance for creating diverse

or unique gestures. It differs by presenting semantic content

rather than guidance or advice. For this policy we constructed

a dictionary of sixty English words starting from a combined

set of 3000 monosyllabic [30] and 3000 disyllabic [31] words

rated for imageability, a construct which captures how easily

a given word elicits or evokes a mental image or picture

of what it refers to. While this clearly relates to the idea

that words may inspire gestures, the relationship is hard to

predict. High imageability words might lead to a large number

of similar gestures (e.g., all gestures for “ice-cream” might

be frosty cones), while low imageability words might have

more diversity, as users think of different things, or might

poorly support the task by failing to inspire gestures at all.

Consequently, our dictionary was built from a spread of words:

20 words from the top end of the imageability scale, 20 words

from the center of the scale and 20 words from the bottom

of the scale. We also filtered words by further criteria to

ensure they avoided extremes of affect [35] and were widely

known [34], [33]; see Table V for full details.

D. User Study Design

This study was largely similar to first study; it used MTurk,

ran on a website, required completion on a mobile device and

used the same Protractor gesture recognizer. In addition to the

introduction of the four policy conditions, there were a number

of differences: Protractor was adjusted to reflect the first study

EERs with an elevated match threshold of 1.25 – we kept this

low threshold to maintain our ability to capture the broadest

range of possible gestures; we introduced a gesture practice

phase, common in similar studies [36]; we replaced the attack

gesture task, due to its impact on recall rates, with a typical

TABLE V
WORDS SETS USED IN LEXICAL POLICY – REPRESENTATIVE EXAMPLES

AND DESCRIPTIVE STATISTICS (μ: MEAN, σ: STANDARD DEVIATION)

Imageability Level High Medium Low
Example words Rug, Boat Cruise, Plot Echo, Union
Measure (units) μ σ μ σ μ σ
Imageability Rating (0-7) [30], [31] 6.59 0.23 4.79 0.99 3.83 0.72
Concreteness Rating (0-5) [32] 4.9 0.13 3.72 0.73 2.83 0.66
Prevalence (z-score) [33] 2.4 0.1 2.42 0.08 2.44 0.12
Age of acquisition (years) [34] 4.26 0.59 7.42 1.61 7.75 1.23
Valance Rating (0-7) [35] 5.66 0.55 5.6 0.56 5.54 0.49
Arousal Rating (0-7) [35] 3.78 0.45 3.76 0.53 3.73 0.51
Dominance Rating (0-7) [35] 5.72 0.46 5.67 0.38 5.64 0.5



(a) Blacklist (b) Consolidated (c) Lexical

Fig. 6. The second study on a Samsung Galaxy 8 Android mobile phone
in Google Chrome. Blacklist and Consolidated policies presenting banned
dictionary gestures (a), (b). Lexical policy with the term “shadow” displayed
to inspire gestures; it can be changed via the bottom left button (c). Both the
gesture dictionary and lexical word disappear as soon as a user’s finger lifts
from the screen during pass-gesture creation; neither is shown again.

memory game distracter task and; there was a follow-up recall

session 24-72 hours after the initial session – a recall period

similar to that used in prior work [14] to reflect real-world

smart phone unlocking frequencies. For this more involved

study, participants received 1 USD for completion of the first

session and 0.5 USD for completion of the second session.

Details of the study structure are described below; for brevity,

we omit details that replicate those in the first study.

Study instructions were similar to the first study – they were

modified to reflect the revised study structure and included

a brief description of the policy; each participant completed

only one policy condition. Although participants did not create

attack-gestures, we retained this section of the instructions to

motivate participants to create stronger gesture passwords. In

the baseline policy condition, creation and confirmation of the

pass-gesture proceeded identically to the first study. In the

blacklist and consolidated policy conditions, participants were

shown the gesture dictionary on the password creation screen

and informed they cannot use these gestures; all creation pass-

gestures were tested against the dictionary. If there was a

match, participants received a policy error message and needed

to restart the pass-gesture creation process. In the lexical

policy condition, the creation screen prominently displayed a

word, the instruction to use this word to inspire their gesture,

and the ability to change this word to another one. The first

presented word was determined by the participant ID number

(from the database logging the study results) in order to more

evenly balance initial word presentation. Changed words were

delivered in a random order. Participants were able to change

the word multiple times. Figure 6 shows all policy interfaces.

After confirming their pass-gestures, participants practiced

them 10 times. Gestures during practice were matched against

creation and confirmation gestures and feedback as to whether

they matched was provided to users after each gesture entry.

Success was not mandated. Following prior study designs [14],

we then had participants complete a distracter task to wipe

their short term memory: they played a color matching game

in which they flipped over pairs of cards looking for similar

colors. The study session finished with a recall task and closing

feedback that was identical to the first study. Those participants

who successfully recalled their gestures within five attempts

were invited back to a second recall session. This was achieved

via the bonus feature of MTurk that allows the owners of a

task to send an email and provide an additional payment to

workers who complete their task. The email was sent 24 hours

after completion of the study and included a link and a QR

code for the recall study. The follow up task was a single

recall test, identical in structure to the initial recall test. The

link expired after 48 hours of receiving the invite.

E. Measures

We measured all data captured in the first study. In addition,

we logged the number of practice gestures participants cor-

rectly matched against their creation or confirmation templates

and a new set of recall data for participants who completed the

second session. For participants in the blacklist and consoli-

dated policies we additionally logged the number of times they

matched the dictionary gestures during pass-gesture creation

while in the lexical policy we logged the lexical cue displayed

when they created their gesture, and the number of times they

changed this cue.

F. Usability Results

1) Demographics: In total, 4000 unique US based MTurk

workers completed the study: 1000/policy. They were predom-

inantly white (65.1%), black or African American (11.4%),

Hispanic (9.7%) or Asian (7.8%) and 18-24 (23.5%), 25-34

(48.6%) or 35-44 (19.5%) years old. Education level (post-

graduate (11.7%), college (49.2%), high school level (37%))

and profession were diverse; 11% were students. Participants

completed the study tasks on the first day (from the start of

gesture creation until the final gesture recall) in a median of

132 seconds, and the gesture password recall task (equivalent

to the recall time measure, see section IV-C) on the second

day in a median of 4 seconds; the hourly compensation rates

were 27 USD per hour and 450 USD per hour respectively.

2) Setup, Participation and Recall: Usability measures are

summarized in Table VI while participation and recall rates

are in Table VII. For the majority of measures, the data was

homogeneous and exhibited strong positive skews; accordingly

we applied non-parametric testing. Kruskal-Wallis tests on

Setup Time (χ2 = 1076.5, p < 0.001), Day 1 Recall

Time (χ2 = 133.15, p < 0.001) and Day 2 Recall Time

(χ2 = 34.525, p < 0.001) revealed significant differences.

Bonferroni corrected post-hoc Wilcoxon tests on these mea-

sures revealed the following comparisons to be significant: all

differences in Setup Time (at p < 0.001); all bar between

baseline and lexical in Day 1 Recall Time (at p < 0.003) and;

between baseline-blacklist, baseline-consolidated and lexical-

consolidated in Day 2 Recall Time (at p < 0.003). Recall

Attempts did not vary on day 1 (χ2(2) = 5.66, p = 0.129)

or day 2 (χ2(2) = 4.43, p = 0.22). Bonferroni corrected

Chi-squared tests of independence revealed the following

differences in participation and recall rates: the consolidated

condition recorded reduced Day 1 Recall Rate compared to



Fig. 7. Receiver Operating Characteristic (ROC) curves contrasting FRR and
FAR performance for the four policy conditions with Protractor and DTW.

baseline (χ2 = 9.39, p = 0.013); the blacklist condition

showed reduced Day 2 Return Rates compared to consolidated

(χ2 = 7.5, p = 0.037) and; blacklist and consolidated

led to lower Day 2 Recall Rates than baseline (respectively,

χ2 = 7.04, p = 0.048 and χ2 = 7.46, p = 0.038). In sum:

our policies lengthened mean setup (by 9.63 to 53.21 seconds)

and recall (by 0.21 to 1.1 seconds) times and led to modest

reductions (of approximately 3%) in recall rates.

3) Policy Specific Measures: In the lexical policy, only

24.2% of participants opted to change the word. They did

so a median of 3 times. This, in conjunction with the setup

times close to baseline, suggests a low degree of compliance

with the policy: most participants did not engage strongly

with the task. In the blacklist and consolidated policies,

participants attempted to create a gesture that matched one

in the dictionary a mean of, respectively, 1.99 times (σ: 3.24)

and 2.44 times (σ: 2.96). While this shows participants did

experience additional challenges in creating gestures due to

the blacklisted dictionaries, its not sufficient to account for the

substantial increase in setup times alone – rather than make

repeated attempts, the blacklist and consolidated conditions led

to participants engaging more strongly with the task; spending

more time thinking about the gesture they would create.

G. Security Results: Preprocessing and EER

Appendix A shows a subjective categorization of gestures

from each policy, using the same categories and raters from

the first study. We note that gestures in the blacklist and

consolidated conditions show increased rates of compound

gestures (complex gestures involving two or more distinct

forms) compared to baseline: both 39.0% versus baseline’s

16.6%. Additionally, lexical shows the highest rates for the

simple categories of geometric shapes and letters (54% in

total). Appendix B shows the distribution of all raw points in

creation gestures across all policies. We calculated EERs as in

the first study; optimal re-sampling sizes were unchanged at

96 for Protractor and 24 for DTW. Table VIII shows the EERs

and the corresponding threshold values and Figure 7 the ROC

curves. In general, the lexical condition shows poor perfor-

mance: EERs are elevated compared to baseline. The blacklist

and consolidated conditions show more promise: EER rates are

similar (Protractor) or improved (DTW) over baseline. At the

same time, thresholds become more permissive. These trends

suggest that the blacklist and consolidated policies collected

a more diverse set of gestures – EER thresholds are more

permissive due to greater variance in the strokes generated.

H. Security Results: Entropy Analysis

As the second analysis, we generated n-gram models for

each policy using the well balanced 3x10 model configuration

from the first study. Appendix E shows the stroke distribution

for each policy in Figure 11. We then calculated partial

guessing entropy. The results are shown in Table IX. All

three of the policies introduced in this paper equal or exceed

the baseline policy at most α levels. However, there is some

discrepancy between the policies as α increases. Specifically,

at the low α levels more relevant to an online attack with

a small number of guesses, the blacklist and consolidated

policies show elevated partial guessing entropy. In contrast,

the lexical policy shows a reduction in partial guessing entropy

compared to baseline at low α levels while, at higher levels

of α, it achieves peak results. We suggest these variations

may be due to compliance rates with the lexical policy: the

minority of users who engaged more strongly with the lexical

cue may have created highly unique and complex gestures,

making it more difficult for an attacker to guess the full

set. In contrast, the enforced compliance with the blacklist

and consolidated policies ensured that all users needed to

create gestures reflecting the policy constraints, resulting in

a reduction in the size of the “weak subspace” of easily

guessable gestures occupying low α levels.

I. Security Results: Clustering-based Dictionary Attack

Table VIII shows the number of clusters and the mean inter-

cluster distances for each algorithm and policy. We note that

the number of clusters are reduced compared to the first study

due to the smaller sample sizes (1000 vs 2594); this likely

also accounts for some of the variations in mean inter-cluster

distances between the two studies. Looking at the differences

between the policies, we note the similarly between gestures

in each dictionary cluster is markedly higher in the lexical

policy than in baseline. This suggests that gestures in each

cluster in the lexical policy were more homogeneous than in

baseline. In contrast, the blacklist policy (for Protractor) and

the consolidated policy (for both recognizers) showed more

heterogeneity in the gestures within each cluster. The clusters

in these policies collected a more diverse set of gestures. The

results of dictionary attacks on all four policies are shown

in Figure 8. The charts suggest the lexical policy impairs

resistance to the dictionary attacks, while the blacklist and con-

solidated policies may enhance it. We tested these variations

for significance at specific FRR values of 2.5% (DTW-only),

5% and 10% using sets of Bonferroni corrected Chi-squared

tests of independence. For Protractor, all differences in the



TABLE VI
USABILITY RESULTS FROM THE SECOND STUDY (μ: MEAN, σ: STANDARD DEVIATION, μ̃: MEDIAN). TABLE SHOWS # SETUP CANCELS (SC), # CONFIRM

FAILURES (CF), SETUP TIME (S) (ST), # PRACTICE MATCHES (PM), DAY 1 RECALL TIME (S) (D1-RT), # DAY 1 RECALL ATTEMPTS (D1-RA), DAY 2
RECALL TIME (S) (D1-RT) AND # DAY 2 RECALL ATTEMPTS (D1-RA) FOR ALL POLICIES.

Baseline Lexical Blacklist Consolidated
Measure μ σ μ̃ μ σ μ̃ μ σ μ̃ μ σ μ̃

SC 0.78 2.55 0.0 0.81 1.76 0.0 0.31 1.22 0.0 0.32 1.22 0.0

CF 0.2 0.62 0.0 0.25 0.64 0.0 0.27 0.61 0.0 0.35 0.7 0.0

ST 29.48 41.21 17.26 39.11 37.83 27.87 67.35 69.57 48.96 82.69 94.01 59.64

PM 9.33 1.69 10.0 9.14 1.94 10.0 8.99 2.14 10.0 8.94 2.17 10.0

D1-RT 3.03 3.25 2.13 3.24 3.53 2.29 3.54 4.03 2.58 3.92 3.85 2.8

D1-RA 1.08 0.4 1.0 1.12 0.52 1.0 1.07 0.36 1.0 1.09 0.41 1.0

D2-RT 5.13 5.4 3.55 5.61 5.88 3.7 6.86 11.63 4.09 6.23 6.01 4.23

D2-RA 1.22 0.61 1.0 1.25 0.63 1.0 1.27 0.62 1.0 1.29 0.71 1.0

performance of clustering dictionary attack were significant (at

p ≤ 0.0014 or lower, χ2 = 13.6 to 149.32) except between

blacklist and consolidated (all p ≥ 0.27, χ2 = 0.78 to 4.02)

and between baseline and consolidated at the 5% FRR level

(p = 0.2, χ2 = 4.57). Data for DTW tells a similar story.

All differences were significant except between blacklist and

consolidated (all p = 1). Blacklist significantly improved over

baseline at the 5% FRR level (p = 0.029, χ2 = 7.95) and all

other significant differences were at p < 0.001 (χ2 = 17.48
to 609.9). To provide some specifics: using DTW and at the

11.54% FRR level derived from prior work and discussed in

the first study, the best performing policy is consolidated. The

dictionary attack cracks 14.93% of gestures generated under

the consolidated policy, an improvement of 30.69% over the

21.54% cracked in the baseline condition at the same FRR.

We conclude our blacklist and consolidated policies improve

the security of gesture passwords, while our lexical policy

reduces it. A possible explanation is that the lexical policy

does not require compliance, while it is mandated in other

two policies, ensuring that participants can not use one of the

blocked gestures. In addition, participants generated relatively

simple (see Appendix A) and homogeneous (see Table VIII)

gestures with the lexical policy. We also note the lack of

significant security improvements with the consolidated policy

compared to the blacklist policy suggests that this more

comprehensive set of restrictions on gestures may only provide

marginal benefits. Finally, we also note the results are aligned

with those from the first study: DTW outperforms Protractor

by offering an increased resistance to dictionary attacks.

TABLE VII
PARTICIPATION AND RECALL RATES IN THE SECOND STUDY; 500

PARTICIPANTS STARTED DAY 1 IN EACH POLICY. ALL PROPORTIONS

SHOWN NUMERICALLY, AS % AND WITH CONFIDENCE INTERVALS (CI).

Day 1 Day 2
Recall Rate Participants Recall Rate
(#, %, CI) (#, %, CI) (#, %, CI)

Baseline
1000,983, 98.3%, 570, 57.98%, 559, 98.07%,

97.49%-99.1% 54.9%-61.07% 96.94%-99.19%

Lexical
1000,977, 97.7%, 546, 55.88%, 526, 96.33%,
96.77%-98.62% 52.77%-58.99% 94.76%-97.91%

Blacklist
1000,969, 96.9%, 516, 53.25%, 490, 94.96%,
95.82%-97.97% 50.1%-56.39% 93.07%-96.84%

Consolidated
1000,959, 95.9%, 571, 59.54%, 542, 94.92%,
94.67%-97.12% 56.43%-62.64% 93.12%-96.72%

Fig. 8. Crack rates in each policy using Protractor and DTW dictionaries.

VI. DISCUSSION

By applying the proposed framework to the first study,

we made two integral observations: (1) EERs alone cannot

adequately represent the security of gesture passwords, often

overestimating their security, and (2) our clustering-based

dictionary attack is highly effective, and many baseline gesture

passwords are vulnerable to online attacks due to the biased

ways in which people select easy-to-draw (simple) gestures.

Password policies may be able to mitigate these biases.

However, designing policies is challenging and characterized

by trade-offs; increasing security reduces usability [37]. Our

three gesture policy designs sought to improve security while

minimizing costs to usability through two different strategies:

the lexical policy sought to inspire and the blacklist and con-

solidated policies to restrict. The lexical policy maintained us-

ability, but reduced security. A major problem was compliance;

behavioral data (in terms of setup time and word update rate)

suggest participants did not engage with the task. Alternatively,

the inherent imageability [30] of words may have led them to

create homogeneous forms – this assertion is backed up by the

high similarity of gestures within each cluster (see Table VIII)

and data from the qualitative categorization of the gestures

that indicates the lexical policy led to a high proportion of

gestures based on simple shapes and letters – see Appendix A.

On the other hand, the blacklist and consolidated policies

enforced compliance and improved security at the cost of

increased setup and recall times. This may be due to increased

heterogeneity of the gestures: in qualitative categorization,

they led to high rates of compound categorizations, referring

to gestures with two or more elements, that we suggest will



TABLE VIII
POLICY COMPARISON DATA: EER THRESHOLDS, PERCENTAGES, AUROC VALUES, MEAN INTER-CLUSTER DISTANCES FOR LARGEST 20 CLUSTERS AND

NUMBER OF CLUSTERS. NOTE: LARGER PROTRACTOR DISTANCES AND SMALLER DTW DISTANCES REPRESENT MORE SIMILAR GESTURES.

Dataset
Protractor DTW

EER Inter-Cluster Number EER Inter-Cluster Number
Threshold % AUROC Match Scores Clusters Threshold % AUROC Match Scores Clusters

Baseline 1.32 3.19% 0.974 3.01 140 16.24 2.28% 0.989 10.2 121

Lexical 1.39 4.82% 0.963 4.44 125 17.91 4.3% 0.982 8.66 119

Blacklist 1.14 3.34% 0.968 2.61 141 17.31 1.68% 0.993 9.4 128

Consolidated 1.1 3.35% 0.969 1.55 131 18.16 1.83% 0.993 13.05 118

TABLE IX
COMPARISON OF PARTIAL GUESSING ENTROPY (“BITS OF INFORMATION”)

WITH CRACKING FRACTION (α) ACROSS POLICY CONDITION DATASETS.

Dataset
α

0.1 0.2 0.3 0.4 0.7 1.0
Baseline 3x10 7.55 11.06 14.47 16.23 19.12 21.08

Lexical 3x10 7.53 11.59 15.27 16.99 19.64 21.37

Blacklist 3x10 8.29 12.99 15.62 16.99 19.43 21.2

Consolidated 3x10 8.42 13.31 15.75 17.06 19.45 21.2

be more diverse (and thus harder to guess) than simpler single

forms. Blacklist policies should be refined in future work.

It is also worth comparing the gestures in this paper with

pattern locks, which can be considered as constrained gestures

– Cho et al. [14] provide a detailed analysis that includes

cracking results against patterns captured in a similar setting to

this work (on MTurk) and in a standard policy: in 20 guesses,

33% of patterns were cracked. With our baseline policy,

achieving a similar level of security would require a more

rigid match criteria than used in our studies. A threshold of 2.0,

used in prior work [10], would achieve this (23.13% to 31.49%

cracked) at a cost of increased FRRs – based on data in the first

study, these would rise to 11.54%. We note this figure remains

reasonable; pattern lock errors are reported to run at 12.1% in

real world use [27]. While our blacklist policies offer an im-

provement on performance in terms of resistance to dictionary

attack (up to 14.93%), they do so at a cost in other metrics.

Cho et al. [14] report pattern setup times of 22 seconds,

whereas our blacklist policy and consolidated polices took

between three and four times as long, reflecting participants’

mandated engagement with the gesture password creation task.

While this is not ideal, free-form gesture passwords are novel

and setup times may improve with more training and use in

the future. There are further limitations to this work. MTurk

workers, and the gesture passwords they create, may not be

representative [29], and the security and usability incentives

we offered upon gesture selection may not match the real-

world intentions and needs. Attackers may be able to use other

sources of data (e.g., smudges [28]) to aid guessing attacks.

Alternative discretization methods may improve guessability in

n-gram models, and affect the partial guessing entropy results.

Larger data sets collected in the wild (e.g., through a real-

world mobile application) are a precursor to addressing these

challenges – we identify exploring alternative ways to gather

real-world samples as a challenge for future work.

It is also worth reflecting our characterization of gesture

passwords: we position them against the dominant (primary)

unlock methods of PINs and patterns. In this scenario, gesture

passwords improve on partial guessing entropy. Alternatively,

they could be positioned against secondary unlock methods

(e.g., biometrics) used in addition to a primary scheme.

Gesture passwords may still provide value in this case as

a complementary usable and secure secondary authentication

method. We note current smart-phones provide multiple sec-

ondary unlock options (e.g., face recognition, iris scanner,

and fingerprint scanner) and allow users to operate different

schemes interchangeably. Indeed, multiple options are needed

due to limitations affecting the use of each secondary scheme:

fingerprint scanners perform poorly when fingers are oily or

dirty and recognition rates may decrease with user age [38];

face recognition and iris scanning do not work in poor lighting,

or when users are mobile or otherwise not looking at the phone

screen. Accordingly, users set up multiple authentication sys-

tems to unlock their devices in various situations. As such,

we believe gesture passwords, which can be readily entered

without close attention to the phone screen (i.e., they are

scale and position independent), provide a valuable alternative

means for users to quickly and easily unlock their phones. We

believe they would be beneficial in common situations such

as when users are not attending to their phone screen (e.g.,

while walking or performing other activities [38]).

VII. CONCLUSION

This paper proposes a novel security assessment framework

for gesture passwords based on entropy assessment and auto-

mated clustering and dictionary generation capabilities. It val-

idates this framework by collecting and analyzing the largest

current sample of gesture passwords (N=2594). Responding

to the ease with which gesture passwords were cracked, we

propose three novel policy designs for gesture passwords:

blacklist, consolidated and lexical. These are evaluated in a

new two-day study (N=4000). While the lexical policy reduces

security with respect to a online attack with 20 guesses, the

blacklist and consolidated policies boost guessing entropy

and reduce susceptibility to dictionary attacks at a modest

cost in terms of usability. We believe gesture passwords are

a promising smartphone authentication technology and that

future work should focus on understanding the gestures people

create and the policies, guidance, and feedback they need to

do so more securely. This paper works towards this goal.
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APPENDIX A

SUBJECTIVE CATEGORIZATION OF GESTURES

Table X reports subjective categorization rates for gestures.

The first seven categories appear in prior work [11], while

the remaining four categories of Compound, Cursive, Iconic

and Other were newly introduced. Compound gestures are

complex, involving at least two or more elements (e.g., a shape

and a letter); cursive gestures involve short sequences of letters

(e.g., hand-writing) and; iconic gestures depict objects (e.g.,

hands and flowers). Other collects any remaining gestures.

TABLE X
MEAN SUBJECTIVE CATEGORIZATION RATES FROM TWO INDEPENDENT

RATERS OF GESTURES IN BOTH STUDIES. CATEGORIZATIONS USED A

RANDOM 10% OF FIRST STUDY DATA (260 GESTURES) AND A RANDOM

25% OF EACH POLICY IN THE SECOND STUDY (250 GESTURES), SAMPLES

SELECTED TO BE NUMERICALLY SIMILAR IN SIZE. INTER-RATER

AGREEMENT SCORES (COHEN’S KAPPA) ARE SHOWN IN THE FINAL ROW.
THE RIGHTMOST COLUMN REPORTS THE MEAN CATEGORIZATION RATES

FROM BOTH DATA SETS IN [11] FOR REFERENCE.

Category First Study Baseline lexical Blacklist Consolidated Prior work [11]
Digit 9.04% 11.20% 7.00% 12.60% 9.20% 9.25%
Geometric Shape 22.50% 30.00% 33.80% 20.60% 11.60% 44.90%
Letter 22.89% 21.80% 20.20% 11.60% 14.80% 28.45%
Math Function 2.89% 3.20% 5.00% 6.60% 9.80% 9.10%
Math Symbol 9.81% 2.80% 2.40% 4.80% 4.40% 4.40%
Music Symbol 0.96% 0.20% 0.40% 0.00% 0.40% 2.70%
Special Character 0.00% 4.80% 1.40% 2.40% 1.20% 2.20%
Compound 22.12% 16.60% 14.40% 35.20% 39.00% N/A
Cursive 4.04% 2.80% 7.60% 3.00% 3.80% N/A
Iconic 5.19% 6.20% 7.60% 3.00% 5.00% N/A
Other 0.58% 0.40% 0.20% 0.20% 0.80% N/A

Rater
Agreement N/A

κ = 0.40 κ = 0.29 κ = 0.38 κ = 0.50 κ = 0.44
p < .001 p = .003 p < .001 p = .001 p < .001
Moderate Fair Fair Moderate Moderate

First study and second study baseline and lexical catego-

rizations are broadly consistent. Second study blacklist and

consolidated policies show reductions in gestures categorized

as geometric shapes and letters and elevated rates for com-

pound categorizations. Compared to prior work (right column),

gesture categorizations show reduced rates for geometric

shapes and letters due to the introduction of new categories

(particularly compound) and a reduced occurrence of math

and music symbols, possibly due to different populations

(university students in [11] versus MTurk workers here).

APPENDIX B

DISTRIBUTION OF GESTURE POINTS IN POLICY

CONDITIONS IN FIRST AND SECOND STUDIES

Figure 9 depicts the distribution of gesture points in both

studies. All results show bias in start and final point locations;

first study data and the second study baseline policy are most

strongly biased (to left corners) in start position and the lexical

policy most evenly distributed in start and final positions.
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Fig. 9. Distribution of stroke points in user-chosen gestures in both studies.
Columns depict start (left), final (right) and all other points (center) while
rows depict data from first study (top) and second study baseline (center-top),
lexical (center), blacklist (center-bottom) and consolidated (bottom).



APPENDIX C

n-GRAM MODEL RESULTS

Table XI presents details of the 134 n-gram models generated from gestures captured in the first study that achieved a crack

rate of greater than 10%. These data highlight the challenges in selecting appropriate n-gram models as high crack rates can

be combined with low similarity to the original user-chosen gestures. Similarly, high similarity scores can be obtained with

larger models (i.e., with more fine-grained discretizations) while the number of n-gram cases observed can be reduced.

TABLE XI
SUBSET OF 134 n-GRAM MODELS GENERATED FROM FIRST STUDY DATA THAT ACHIEVED A CRACK RATE OF GREATER THAN 10%. PROPERTIES OF

CRACK RATE (CR), SIMILARITY (SM) AND COMPLETENESS (CP) METRICS ARE REPORTED FOR EACH MODEL. THE SELECTION MODELS FOR

OPTIMIZATION ARE HIGHLIGHTED IN BOLD.

Model Parameters Model Performance Model Parameters Model Performance
Len Ang Phase Smoothing Excl. CR SM CP Len Ang Phase Smoothing Excl. CR SM CP

2 6 offset add-1 all 12.99% 45.53% 98.81% 3 10 offset add-1 single 11.95% 73.59% 88.65%
2 6 offset add-1 dual 12.68% 45.53% 98.81% 3 10 offset add-1/n dual 15.23% 73.59% 88.65%
2 6 offset add-1 single 12.95% 45.53% 98.81% 3 10 offset add-1/n single 11.26% 73.59% 88.65%
2 6 offset add-1/n all 12.99% 45.53% 98.81% 3 10 offset Good-Turing dual 15.23% 73.59% 88.65%
2 6 offset add-1/n dual 12.72% 45.53% 98.81% 3 10 offset Good-Turing single 11.83% 73.59% 88.65%
2 6 offset add-1/n single 12.95% 45.53% 98.81% 3 10 aligned add-1 dual 14.69% 70.51% 88.13%
2 6 offset Good-Turing all 12.99% 45.53% 98.81% 3 10 aligned add-1/n dual 13.26% 70.51% 88.13%
2 6 offset Good-Turing dual 12.68% 45.53% 98.81% 3 10 aligned Good-Turing dual 14.46% 70.51% 88.13%
2 6 offset Good-Turing single 12.95% 45.53% 98.81% 3 12 offset add-1 dual 13.80% 76.56% 82.75%
2 6 aligned Good-Turing single 10.25% 42.25% 99.40% 3 12 offset add-1 single 10.06% 76.56% 82.75%
2 8 offset add-1 dual 16.96% 58.98% 95.83% 3 12 offset add-1/n dual 13.92% 76.56% 82.75%
2 8 offset add-1/n dual 16.92% 58.98% 95.83% 3 12 offset add-1/n single 10.25% 76.56% 82.75%
2 8 offset Good-Turing dual 16.92% 58.98% 95.83% 3 12 offset Good-Turing dual 13.99% 76.56% 82.75%
2 8 aligned add-1 dual 12.49% 46.88% 97.22% 3 12 offset Good-Turing single 10.18% 76.56% 82.75%
2 8 aligned add-1 single 12.37% 46.88% 97.22% 3 12 aligned add-1 dual 11.84% 73.05% 85.75%
2 8 aligned add-1/n dual 12.49% 46.88% 97.22% 3 12 aligned add-1/n dual 11.22% 73.05% 85.75%
2 8 aligned add-1/n single 11.95% 46.88% 97.22% 3 12 aligned Good-Turing dual 12.14% 73.05% 85.75%
2 8 aligned Good-Turing dual 10.18% 46.88% 97.22% 3 14 offset add-1 dual 14.80% 78.10% 80.30%
2 8 aligned Good-Turing single 12.26% 46.88% 97.22% 3 14 offset add-1 single 10.52% 78.10% 80.30%
2 10 offset add-1 dual 16.65% 61.14% 94.55% 3 14 offset add-1/n dual 12.95% 78.10% 80.30%
2 10 offset add-1 single 17.58% 61.14% 94.55% 3 14 offset Good-Turing dual 13.07% 78.10% 80.30%
2 10 offset add-1/n dual 16.54% 61.14% 94.55% 3 14 aligned add-1 dual 11.80% 77.49% 79.65%
2 10 offset add-1/n single 17.77% 61.14% 94.55% 3 14 aligned add-1/n dual 10.56% 77.49% 79.65%
2 10 offset Good-Turing dual 16.54% 61.14% 94.55% 3 14 aligned Good-Turing dual 12.34% 77.49% 79.65%
2 10 offset Good-Turing single 17.77% 61.14% 94.55% 4 6 offset add-1 dual 14.11% 59.33% 90.38%
2 10 aligned add-1 dual 12.76% 57.75% 94.55% 4 6 offset add-1 single 11.68% 59.33% 90.38%
2 10 aligned add-1/n dual 13.03% 57.75% 94.55% 4 6 offset add-1/n dual 14.15% 59.33% 90.38%
2 10 aligned add-1/n single 10.06% 57.75% 94.55% 4 6 offset add-1/n single 11.60% 59.33% 90.38%
2 10 aligned Good-Turing dual 14.65% 57.75% 94.55% 4 6 offset Good-Turing dual 14.15% 59.33% 90.38%
2 10 aligned Good-Turing single 10.45% 57.75% 94.55% 4 6 offset Good-Turing single 11.60% 59.33% 90.38%
2 12 offset add-1 dual 14.15% 64.26% 92.63% 4 8 offset add-1 dual 10.87% 77.06% 84.56%
2 12 offset add-1 single 13.61% 64.26% 92.63% 4 8 offset add-1/n dual 11.33% 77.06% 84.56%
2 12 offset add-1/n dual 14.42% 64.26% 92.63% 4 8 offset Good-Turing dual 11.45% 77.06% 84.56%
2 12 offset add-1/n single 13.76% 64.26% 92.63% 4 8 aligned add-1 single 10.79% 62.88% 86.21%
2 12 offset Good-Turing dual 14.34% 64.26% 92.63% 4 8 aligned add-1/n single 10.25% 62.88% 86.21%
2 12 offset Good-Turing single 13.80% 64.26% 92.63% 4 8 aligned Good-Turing single 10.56% 62.88% 86.21%
2 12 aligned add-1 dual 12.84% 60.68% 93.11% 4 10 offset add-1 dual 12.03% 81.46% 80.24%
2 12 aligned add-1 single 11.49% 60.68% 93.11% 4 10 offset add-1 single 14.57% 81.46% 80.24%
2 12 aligned add-1/n dual 12.41% 60.68% 93.11% 4 10 offset add-1/n dual 11.87% 81.46% 80.24%
2 12 aligned add-1/n single 11.57% 60.68% 93.11% 4 10 offset add-1/n single 13.76% 81.46% 80.24%
2 12 aligned Good-Turing dual 12.99% 60.68% 93.11% 4 10 offset Good-Turing dual 11.80% 81.46% 80.24%
2 12 aligned Good-Turing single 11.64% 60.68% 93.11% 4 10 offset Good-Turing single 14.15% 81.46% 80.24%
2 14 offset add-1 dual 12.57% 63.69% 91.19% 4 10 aligned add-1 dual 12.72% 78.60% 80.65%
2 14 offset add-1 single 13.22% 63.69% 91.19% 4 10 aligned add-1/n dual 10.53% 78.60% 80.65%
2 14 offset add-1/n dual 12.07% 63.69% 91.19% 4 10 aligned Good-Turing dual 12.03% 78.60% 80.65%
2 14 offset add-1/n single 13.15% 63.69% 91.19% 4 12 offset add-1 dual 15.46% 84.70% 73.67%
2 14 offset Good-Turing dual 12.11% 63.69% 91.19% 4 12 offset add-1 single 11.60% 84.70% 73.67%
2 14 offset Good-Turing single 13.15% 63.69% 91.19% 4 12 offset add-1/n dual 12.72% 84.70% 73.67%
2 14 aligned add-1 dual 11.33% 63.61% 90.95% 4 12 offset add-1/n single 11.29% 84.70% 73.67%
2 14 aligned add-1 single 10.18% 63.61% 90.95% 4 12 offset Good-Turing dual 14.00% 84.70% 73.67%
2 14 aligned add-1/n dual 11.26% 63.61% 90.95% 4 12 offset Good-Turing single 11.45% 84.70% 73.67%
2 14 aligned add-1/n single 10.68% 63.61% 90.95% 4 12 aligned add-1 dual 11.91% 82.81% 75.13%
2 14 aligned Good-Turing dual 10.91% 63.61% 90.95% 4 12 aligned add-1 single 11.03% 82.81% 75.13%
3 6 offset add-1 dual 13.38% 53.16% 94.72% 4 12 aligned add-1/n dual 11.30% 82.81% 75.13%
3 6 offset add-1 single 11.84% 53.16% 94.72% 4 12 aligned add-1/n single 10.95% 82.81% 75.13%
3 6 offset add-1/n dual 13.38% 53.16% 94.72% 4 12 aligned Good-Turing dual 10.87% 82.81% 75.13%
3 6 offset add-1/n single 11.84% 53.16% 94.72% 4 12 aligned Good-Turing single 10.95% 82.81% 75.13%
3 6 offset Good-Turing dual 13.38% 53.16% 94.72% 4 14 offset add-1 dual 12.95% 86.39% 69.74%
3 6 offset Good-Turing single 11.84% 53.16% 94.72% 4 14 offset add-1 single 10.95% 86.39% 69.74%
3 8 offset add-1 dual 14.49% 70.70% 89.74% 4 14 offset add-1/n dual 12.53% 86.39% 69.74%
3 8 offset add-1/n dual 14.96% 70.70% 89.74% 4 14 offset add-1/n single 11.57% 86.39% 69.74%
3 8 offset Good-Turing dual 14.88% 70.70% 89.74% 4 14 offset Good-Turing dual 12.45% 86.39% 69.74%
3 8 aligned add-1 single 10.72% 55.86% 92.31% 4 14 offset Good-Turing single 11.72% 86.39% 69.74%
3 8 aligned add-1/n dual 11.68% 55.86% 92.31% 4 14 aligned add-1 dual 11.26% 85.89% 69.33%
3 8 aligned add-1/n single 10.45% 55.86% 92.31% 4 14 aligned add-1 single 10.14% 85.89% 69.33%
3 8 aligned Good-Turing single 10.95% 55.86% 92.31% 4 14 aligned add-1/n dual 10.06% 85.89% 69.33%
3 10 offset add-1 dual 15.27% 73.59% 88.65% 4 14 aligned Good-Turing dual 10.18% 85.89% 69.33%



APPENDIX D

n-GRAM STROKE DISTRIBUTIONS IN FIRST STUDY

Figure 10 depicts the stroke distribution in the three n-gram models chosen in the first study. Bias in the start stroke direction

is towards rightwards and downwards, while center strokes tend to be short and final strokes are more likely to involve rightward

motion.
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Fig. 10. Distribution of strokes in optimized 2x10 (top row), 3x10 (center row) and 4x12 (bottom row) n-gram models in the first study. Left column shows
data from start strokes, right column shows data from final strokes and all other strokes are shown in the center column. Each figure is divided into the
discretization regions available in the given n-gram model, with the frequency of sub-strokes observed in each region marked in % and by color. Boundary
regions are shown to scale as grey areas for both length and angle. The proportion of strokes used in each region (black text) and boundary (grey text) is
shown at the boundary (for angles) and the bottom of each diagram (for lengths).



APPENDIX E

n-GRAM STROKE DISTRIBUTIONS IN SECOND STUDY

Figure 11 depicts stroke distribution in n-gram models generated for all four policies in the second study. Bias in the start

stroke direction is greatest in baseline. Center strokes are short while final strokes tend to be rightward.
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Fig. 11. Distribution of strokes in baseline (top row), lexical (center-top row) and blacklist (center-bottom row) and consolidated (bottom row) n-gram models
in the second study. Each model uses the configuration of the optimized 3x10 model from the first study. Left column shows data from start strokes, right
column shows data from final strokes and all other strokes are shown in the center column.
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