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Abstract—Electrocardiogram (ECG) is a promising biometric.
There has been much research on ECG based user authentication
and identification, but there have been few works to investigate
ECG biometrics for stand-alone wearable ECG sensors, for quick
response time using a single pulse ECG, and for small wearable
devices that may have limited access to others’ ECG information.

Recently, ECG user authentication method using spectrogram
yielded excellent detection performance. However, spectrogram
only utilizes magnitude of short time Fourier transform (STFT)
and phase information was overlooked for ECG features. In this
paper, we address the issues of wearable ECG sensors, quick
response time, and limited access to others’ ECG information
using a new STFT based method that uses phase information.

Our proposed method yielded 0.9% EER for ECG data set
from wearable ECG sensors (15 subjects) and 2.2% EER (equal
error rate) for public ECG-ID database (89 subjects).

Keywords—Biometric; ECG; phase information; short time
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I. INTRODUCTION

Biometrics are promising alternatives for user authentication
and identification [1]. Fingerprint and face are already used in
many smart phones, tablet computers, and traveler identifi-
cation systems with electronic passports. Electrocardiogram
(ECG) is another candidate that can be used as a stand-
alone biometric or as a part of multimodal biometrics [1],
[2]. ECG characteristics such as P wave, QRS complex, and
T wave are determined by atrial depolarization, ventricular
depolarization, and ventricular repolarization of a heart [3]
and their uniqueness depends on the structure and electrical
conduction system of an individual heart.

Many previous research works investigated the possibility of
using ECG signals as a biometric and yielded promising results
for user authentication and identification [4]. In addition, ECG
signals can also provide the proof of the liveness of users [5].
ECG signals have been used as a biometric by extracting
fiducial features or non-fiducial features. Fiducial features of
ECG such as amplitudes or onset time of PQRST features
were estimated from raw ECG signals and these features
were fed into classifiers such as linear discriminant analysis
(LDA) [6], [7], [8]. Non-fiducial features of ECG signal
have also been used for user identification such as principal
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component analysis (PCA), mutual nearest point distance,
wavelet, and spectrogram [9], [10], [11], [12]. Sometimes,
fiducial and non-fiducial features have been combined [13],
[14]. A recent thorough comparative analysis of a wide range
of methods is described in [15], [16].

Almost all previous research on ECG based user identifica-
tion or authentication has investigated one-lead ECG signals
from the chest with multiple ECG pulses for testing (poten-
tially requiring at least a few seconds just for acquiring data
to authenticate) and assuming that others’ ECG information
is available for a dimensionality reduction of features or to
train classifiers such as support vector machine. However, in
many small devices such as wearable smart watches, smart
phones, or notebook computers, these assumptions may not
hold. ECG data may have to be obtained from a finger tip
or a wrist of a user using wearable ECG sensors. Users
typically demand quick response times for user authentication,
a constraint that requires testing be performed on a single
ECG pulse. Moreover, such small systems may have very
limited access to other users’ ECG information. For example,
regular users and potential intruders will not share their
valuable ECG information since they may want to protect their
own biometrics or to break into small systems with higher
possibility.

In this paper, we address the issues of wearable ECG
sensors, quick response time, and limited access to others’
ECG information using a new short time Fourier transform
(STFT) based method. Recent ECG user classification work by
Odinaka et al. [12] used spectrogram, which is the magnitude
of STFT, has yielded excellent detection performance [15].
However, phase contains signal structural information that may
be important as ECG features. To our knowledge, the phase
information of STFT has never been used for ECG-based
authentication algorithms [15], [16]. We propose to use both
magnitude and phase information of complex STFT of a single
ECG pulse from a wristband type wearable ECG sensor and
to use a simple detector using Euclidean distance that does not
require other people’s ECG information. Our proposed method
can potentially be used for smart watch applications or other
mobile devices that are connected to them wirelessly.

In Section II, we describe methods for preprocessing of
ECG signals, extracting ECG features, and authenticating for
small systems such as wearable devices. In Section III, we
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present experimental settings and simulation results with our
preliminary ECG data set from wearable ECG sensors (15
subjects) in terms of various detection performance measures.
We also evaluated our proposed method with larger public one-
lead ECG database from regular ECG sensors (89 subjects).

II. METHODS

A. Pre-processing of ECG signals

A wearable ECG sensor with two electrodes (Nymi band,
Nymi Inc., Canada) was used to acquire subject’s ECG pulses.
During data collection, one electrode is in contact with a finger
on one hand and the other electrode touches the wrist of the
other hand, as depicted in Fig. 1. An example of acquired
ECG signals from the wearable ECG sensor is shown in the
top figure of Fig. 2. Then, a bandpass Butterworth filter with
order 14 (passband = [2Hz 40Hz]) was applied to ECG signals
to reduce baseline wander and high frequency noise. The
resulting ECG signals are shown in the bottom of Fig. 2.
Note that no powerline interference was observed in these
wearable ECG signals. The Pan-Tompkin algorithm was used
to detect R-peaks as shown in the bottom of Fig. 2 with circle
marks [17].

B. ECG Features: Short Time Fourier Transform

Many ECG features have been investigated for user au-
thentication or identification. Fiducial ECG features such as
amplitudes or time points of P wave, QRS complex and T
wave (see the top figure of Fig. 3 for more information on
PQRST of ECG pulse) were initially used [6], [7], [8] and later
non-fiducial ECG features were also used such as principal
components, ECG pulse itself, wavelet, or spectrogram [9],
[10], [11], [12].

Among them, ECG user authentication using log-normal
spectrogram yielded high performance [12], [15]. Spectrogram
is the magnitude squared of the short time Fourier transform
(STFT) as follows:

|X(m,w)|2. (1)

where for given ECG signal x[n] and a window function w[n],
the discrete time STFT of x[n] is

X(m,w) =
∑
n

x[n]w[n−m] exp(−jwn). (2)

Fig. 1. An example of ECG acquisition from wearable ECG sensors. One
electrode is touching a wrist while the other electrode is touching a fingertip
when the data is acquired.
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Fig. 2. ECG signal from wearable device (no unit for ECG amplitude) and
bandpass filtered ECG signal for the same signal with detected R-peaks using
Pan-Tompkin algorithm.

A usual choice for the window function w[n] is a Hamming
window. Evaluating X(m,w) for many (m,w) points can pro-
vide high resolution information with increased computation
time. We chose 0.2 second width of window function support
for w[n] and 0.02 second increment for m (m = 250Hz ×0.02
second = 5). Optimizing these parameters can potentially
improve detection performance.

The spectrogram in (1) can provide excellent spatio-
temporal information on ECG pulses for user identification
as investigated in [12]. However, phase information also
contains important information that characterizes the contents
of signals [18]. Therefore, we propose to use both magnitude
and phase information of STFT in (2) for ECG based user
authentication task. Fig. 3 shows an example of magnitude
image (middle figure) and phase image (bottom figure).

C. User Authentication for Small Systems

Odinaka et al. achieved excellent performance using two im-
portant methods: 1) feature selection using relative entropy and
2) log-likelihood ratio test (which is known to be optimal by
Neyman-Pearson lemma). However, these require knowledge
of a normal model or ECG information of all subjects. For
many small systems such as wearable devices, others’ ECG
information may not be accessible. Therefore, we propose to
use a simple Euclidean distance as follows:

||Xt(m,w)−X(m,w)||2 < τ : H1

||Xt(m,w)−X(m,w)||2 ≥ τ : H0
(3)

where Xt is a complex STFT of an enrolled ECG pulse of a
user (ECG template) and X is a complex STFT of an input
ECG pulse to authenticate. For fixed threshold τ , H1 is a
hypothesis that incoming user is the enrolled user and H0 is
a null hypothesis that incoming user is not.
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Fig. 3. Average ECG from 10 pulses (or ECG template, top) with ECG
features (P wave, QRS complex, T wave) and its spectrogram (or short time
Fourier transform) with magnitude (middle) and angle (or phase, bottom)
using 0.2 second window and 0.02 second increment.

III. RESULTS

A. Experiment Settings

Two 2-minute length ECG pulse trains were acquired using
wearable ECG sensors for 15 subjects (10 male, 5 female)
on the same day. An ECG pulse train was sampled at 250
Hz. Then, the Pan-Tompkin algorithm was used to detect R-
peaks of a bandpass filtered ECG signal and then each ECG
pulse was selected with the length of 0.64 seconds or 160
samples (-67, +92 samples from each R-peak) covering all
PQRST segment. Ten ECG pulses were selected for analysis
from each of the two sessions recorded for each participant.
The selected pulses had the minimum Euclidean distance to the
per subject, per session mean in order to remove outliers due
to, for example, instabilities in finger or wrist contact with the
ECG electrodes. For each subject, two-fold cross validation
was performed using two ten-pulse sets from two records,
respectively. The 10 pulses in the training set were averaged to
generate a template that each individual pulse from the testing
set was matched against.

Our proposed method was also evaluated with larger, pub-
lic ECG data set (ECG-ID, PhysioNet) containing 89 sub-
jects [19], [20]. Two records per subject that were collected on
the same day were chosen in this study. This data was acquired

using one-lead chest ECG sensor with 500 Hz sampling rate
and pre-processed with a baseline drift filtering using wavelet
decomposition, a power-line noise filtering using adaptive
bandstop filter (50 Hz), a high-frequency noise filtering using
Butterworth low-pass filter, and a smoothing with the support
size of 5 [20].

Complex STFT was obtained using a 0.2 second length
Hamming window with step size of 0.02 second. MATLAB
was used for all implementations (The Mathworks, Inc., Nat-
ick, MA, USA).

B. Results of Two Studies

Our proposed method with complex STFT was applied
to our ECG data set from wearable sensors (15 subjects)
and compared with other methods (ECG signal itself using
Euclidean distance, Spectrogram using magnitude information
only of STFT). Fig. 4 shows that the receiver operating char-
acteristic (ROC) curve of our proposed method yielded better
ROC curve than spectrogram based method, but comparable
ROC curve to ECG signal based method. At around false alarm
rate of 1%, our proposed method yielded the best detection
probability (see Table I) among all other methods, but in some
lower (at around 0.5%) or some higher (at around 3%), simple
ECG signal based method yielded better detection power than
all other methods. Table I shows that our proposed method
yielded better EER and detection power at the false alarm rate
of 1% than other previous methods. It seems that more ECG
data from wearable sensors will be required for more robust
results.
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Fig. 4. ROC curves of spectrogram based method, proposed method using
complex STFT, and ECG signal based method using Euclidean distance for
wearable ECG data set (15 subjects). Our proposed method using complex
STFT yielded better ROC curve than spectrogram based method, but compa-
rable ROC curve to plain ECG signal based method.

TABLE I. PERFORMANCE SUMMARY FOR ECG DATABASE FROM
WEARABLE SENSORS (15 SUBJECTS). PD∗ IS A DETECTION PROBABILITY

AT FALSE ALARM = 1%.

Method AUC EER (%) PD∗
ECG signal (no frequency info) 0.9992 1.0 0.9900
Spectrogram (magnitude only) 0.9986 1.1 0.9873

Proposed complex STFT 0.9991 0.9 0.9920

658



Our proposed method with complex STFT was also applied
to the public ECG-ID database (89 subjects) and similar
tendency was observed with our wearable ECG sensor study.
A ROC curve shows that our proposed complex STFT method
yielded better ROC curve than other two methods in Fig. 5.

Table II also shows consistent results: our proposed method
yielded better AUC (area under the curve), EER (equal error
rate), and the detection probability at the false alarm = 1%.

Note that EER results of our proposed method (EER =
0.9% for ECG dataset from wearable sensors, EER = 2.2%
for public ECG-ID database) was higher than the result of [12]
(EER = 0.37%) for different ECG data sets that were collected
on the same day, respectively. Direct comparison may not
be possible due to different ECG data sets used, but our
Euclidean distance based simple user authentication may not
be as effective as relative entropy based feature selection and
likelihood ratio test that were used in [12]. However, the
method in [12] requires all ECG information for all users,
while our proposed method does not, which may be more
suitable for small systems such as wearable devices.

IV. CONCLUSION

We proposed a new ECG based user authentication method
using complex STFT and simple Euclidean distance for wear-
able devices that have wearable ECG sensors in the wrist and
that may not have access to others’ ECG information. Our
proposed method yielded better detection performance than
spectrogram based authentication method in terms of EER. It
also yielded better performance than ECG pulse based method
for ECG-ID database and comparable results for ECG dataset
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Fig. 5. ROC curves of spectrogram based method, proposed method using
complex STFT, and ECG signal based method using Euclidean distance for
ECG-ID database (89 subjects). Our proposed method yielded better ROC
curve than other two methods.

TABLE II. PERFORMANCE SUMMARY FOR ECG-ID DATABASE (89
SUBJECTS). PD∗ IS A DETECTION PROBABILITY AT FALSE ALARM = 1%.

Method AUC EER (%) PD∗
ECG signal (no frequency info) 0.9971 2.7 0.9388
Spectrogram (magnitude only) 0.9943 3.3 0.9244

Proposed complex STFT 0.9978 2.2 0.9496

from wearable sensors in terms of ROC curve, AUC and
detection power at the false alarm rate of 1%.
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