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A B S T R A C T

Head movements are a common input modality on VR/AR headsets. However, although they enable users to
control a cursor, they lack an integrated method to trigger actions. Many approaches exist to fill this gap:
dedicated ”clickers”, on-device buttons, mid-air gestures, dwell, speech and new input techniques based on
matching head motions to those of visually presented targets. These proposals are diverse and there is a current
lack of empirical data on the performance of, experience of, and preference for these different techniques. This
hampers the ability of designers to select appropriate input techniques to deploy. We conduct two studies that
address this problem. A Fitts’ Law study compares five traditional selection techniques and concludes that clicker
(hands-on) and dwell (hands-free) provide optimal combinations of precision, speed and physical load. A follow-
up study compares clicker and dwell to a motion matching implementation. While clicker remains fastest and
dwell most accurate, motion matching may provide a valuable compromise between these two poles.

1. Introduction

Virtual- and Augmented-Reality (VR, AR) headsets are an emerging
form factor and device platform suitable for applications from medicine
(Sousa et al., 2017) to industry (Aromaa et al., 2016). While current
devices (Controls - Interactive patterns - Designing for Google
Cardboard, 2014; HoloLens, 2018b) aim to provide rich, high resolu-
tion graphics, there is less consensus on how users should interact with
them. Common proposals include on-headset taps (Samsung, 2018c),
swipes (Yu et al., 2016) and mid-air gestures captured using optical
(Ha et al., 2014) or wearable sensors (Hsieh et al., 2016). However,
while potentially powerful, these techniques occupy the hands, an un-
desirable situation in many practical wearable contexts (Baird and
Barfield, 1999; Caudell and Mizell, 1992; Lukowicz et al., 2007;
Ockerman and Pritchett, 1998; Tang et al., 2003; Zheng et al., 2015).
To address this limitation, techniques based on tracking the eyes
(Piumsomboon et al., 2017; Sidorakis et al., 2015; Tanriverdi and
Jacob, 2000) and the head (Atienza et al., 2016; Clifford et al., 2017; Jr
et al., 2017) (or a combination of both (Jalaliniya et al., 2015; Kytö
et al., 2018; Piumsomboon et al., 2017; Qian and Teather, 2017)) have
been widely proposed. Indeed, as high-fidelity head tracking is mature,
cost-effective and integral to good quality VR and AR experiences, input
based on head movements is already integrated into many device

platforms (Controls - Interactive patterns - Designing for Google
Cardboard, 2014; HoloLens, 2018b). Authors have also demonstrated it
is accurate, comfortable, and convenient (Jalaliniya et al., 2014; Kytö
et al., 2018), and it is often used as proxy for gaze (Nancel et al., 2013;
Serrano et al., 2015).

However, while head-tracking input has been established an effec-
tive way to control a cursor, it lacks an intrinsic mechanism to confirm
a highlighted selection. A large number of techniques have been pro-
posed to address this limitation. A common solution is dwell or dwell
time, a technique that triggers selection after a short pause (150-
1500ms) over a target (Ramos et al., 2004). It suffers from a trade-off
between the length of this pause (and overall target acquisition times)
and the occurrence of ’Midas touches’, or unintentional target activa-
tions during exploration or natural pauses in motion. Voice activation
also provides a hands-free selection mechanism (HoloLens, 2016), but
at the cost of lowering social acceptability (Rico and Brewster, 2010)
and reduced effectiveness in noisy environments (Caudell and Mizell,
1992; Day et al., 2005). Other approaches co-opt the hands for trig-
gering selection using a physical button, either on a dedicated device
(Use the HoloLens clicker, 2017) or on the headset itself, or via making
in-air gestures (HoloLens, 2018b) – the combination of head cursor with
hand trigger seeks to minimize rather than completely remove reliance
on the hands. Finally, a range of authors have explored selection via
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motion matching (Esteves et al., 2017; Khamis et al., 2018) – targets
move in regular patterns and head motions are correlated against these
changes. A selection is triggered when a similarity threshold is ex-
ceeded. While this technique requires more complex head motions,
authors (Esteves et al., 2017) suggest it is less susceptible to producing
Midas touches, while still keeping hands free and the input movements
discrete, and not requiring command memorization.

This paper argues that while head based input is a good match for
interaction with VR and AR headsets, there is a lack of clarity on the
pros and cons of the different selection methods that can be combined
with it. We contribute data from two studies to elucidate this issue. The
first is a Fitts law (Fitts, 1954) study comparing five selection me-
chanisms; two hands-free (dwell, speech) and three hands-on (clicker,
on-device, mid-air gesture). The second compares a motion matching
approach to the peak performing hands-free (dwell) and hands-on
(clicker) input techniques from the initial study. In addition to Fitts’ and
performance metrics, we report on participants perceived exertion and
preference. The key contribution of this paper are these results – we
argue establishing performance, exertion and preference baselines for
head based target selection techniques will help researchers, designers
and developers producing VR and AR systems make informed choices
about the most appropriate input mechanisms to integrate into their
systems. We close with a series of practical recommendations based on
our study results.

2. Related work

In addition to reducing head/eye movement and attention
switching, and supporting spatial cognition and mental transformations
(Tang et al., 2003), allowing users to interact with head-mounted dis-
plays (HMDs) while minimizing the use of their hands will be important
for AR and VR headsets to become workplace tools. This potential is
exemplified in previous works exploring the use of HMDs to snap
photos during industrial inspection tasks (Aromaa et al., 2016); as
procedural information systems supporting maintenance tasks (Caudell
and Mizell, 1992; Zheng et al., 2015), pre-flight inspections
(Ockerman and Pritchett, 1998), and assembly tasks (Baird and
Barfield, 1999; Day et al., 2005; Tang et al., 2003); and to provide
support during medical analyses (Sousa et al., 2017) or emergency re-
sponses (Lukowicz et al., 2007). Several of these early examples illus-
trate proof-of-concept prototypes with very little input capabilities,
ranging from single-state AR systems (Baird and Barfield, 1999), sys-
tems that rely on the HMD orientation (Caudell and Mizell, 1992), to
systems that use a single speech command to navigate between content
(Ockerman and Pritchett, 1998; Zheng et al., 2015). But while these
provide a look at the potential of AR and VR headsets in the workplace,
the need for richer input has been highlighted by expert users for, e.g.,
personalizing content or interface elements (Ockerman and
Pritchett, 1998).

An approach that can provide seamless interaction with specific or
highly structured work tasks is activity recognition: a system can pro-
vide appropriate customized content by identifying the tools a user is
operating (such as surgical bayonets (Birkfellner et al., 2002)); by an-
choring relevant content to specific locations (such as a patient’s body
during a laparoscopy (Fuchs et al., 1998)); by automatically identifying
the task step or state during, e.g., assembly tasks (Henderson and
Feiner, 2011); or by providing contextual information based on the
user’s location (such as in emergency rescue operations
(Lukowicz et al., 2007)). However, supporting more open ended ac-
tivities requires yielding control to a user by enabling techniques such
eye-tracking (Piumsomboon et al., 2017; Sidorakis et al., 2015), head-
tracking (Clifford et al., 2017; Jr et al., 2017) or their
combination (Piumsomboon et al., 2017). While literature on these
techniques is diverse, head-tracking offers practical advantages: the
required sensing technology (inertial motion units) is mature, cheap
(<10USD), small (<5mm square) and integrated into most current

headsets. Further, existing comparisons between eye and head-tracking
based input suggest head input increases comfort and accuracy
(Jalaliniya et al., 2014; Kytö et al., 2018) while reducing workload and
learning time (Bates and Istance, 2003).

Although head-tracking is a promising approach for hands-free
HMD input capable of, for example, rapid and accurate control of a
cursor (Controls - Interactive patterns - Designing for Google
Cardboard, 2014), it lacks an integrated technique to trigger selections.
Techniques such as dwell (Kjeldsen, 2001; Park et al., 2008), speech
(HoloLens, 2016), gesture (HoloLens, 2018b) and the use of physical
controls in the hand (Use the HoloLens clicker, 2017) or on the headset
(Samsung, 2018c) typically fill this role. While these techniques in-
herently target and emphasize different qualities of interaction, we
argue there is a lack of consistent and systematic comparisons that
empirically contrast between them. This hampers the ability of de-
signers and developers to make effective choices about what techniques
to deploy. In the same way that prior work has provided an actionable
characterization of the differences between head- and eye-pointing
HMD input with dwell (Bernardos et al., 2016; Blattgerste et al., 2018)
and ’clicker’ selection confirmation (Hansen et al., 2018), we argue for
the importance of data comparing a broad range of selection mechan-
isms for head-based input in generic selection tasks (unlike, e.g., text-
entry comparisons (Yu et al., 2017)).

Beyond these traditional selection mechanisms, recent work on
motion matching (Fekete et al., 2009; Vidal et al., 2013; Williamson
and Murray-Smith, 2004) has focused on VR (Khamis et al., 2018;
Piumsomboon et al., 2017) and AR (Esteves et al., 2017; Kangas et al.,
2016) scenarios. In motion matching, interface elements move across
distinct trajectories, and users interact with these by tracking their
movement for a short period of time. While the technique is commonly
applied to eye-tracking, its has also been shown to be effective when
applied to head tracked motions (Esteves et al., 2017). We identify
motion-matching as a final candidate selection technique for head
motion based input on HMDs and seek to provide empirical data con-
trasting performance with this full range of viable selection techniques.

3. Head pointing study — Fitts’ law

The first comparative study employed a Fitts’ Law (ISO 9241-9)
design across five of the most popular selection mechanisms for head-
based input in VR/AR headsets. These are: dwell (e.g., Google
Cardboard (Controls - Interactive patterns - Designing for Google
Cardboard, 2014)); speech; clickers (dedicated device, typically held in
the hand, featuring a button operated by a finger); mid-air gestures
(e.g., HoloLens HoloLens, 2016; HoloLens, 2018b; Use the HoloLens
clicker, 2017) and; on-device input (e.g., a button, as on the Samsung
Gear VR Samsung, 2018c) – see Fig. 1. The goal was to compare these
five common techniques across various quantitative and qualitative
measures. We used a Fitts’ law design as it is a representative and
widely studied targeting task that is commonly used to study selection
mechanisms (Hansen et al., 2018). However, we note that Fitts’ law
models movement, not selection time; model fit decreases if selection
methods add to movement times (Vertegaal, 2008). As such our
quantitative analysis focuses on simple time and accuracy metrics more
than Fitts’ law model fit and throughput.

3.1. Participants

We recruited 20 participants (7F), aged between 21 and 57 (M =
37.45, SD = 10.33). They were postgraduate students, researchers, and
staff at a local institution. Using a 7-point Likert scale (higher is better),
they rated their experience with head-mounted displays at 2.95 (SD =
1.54). One participant recorded no correct trials and was removed from
all analyses.
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3.2. Design

The experiment followed a within-subjects design (balanced using a
Latin Square) and used a standard Fitts’ reciprocal tapping task – in
each block of trials, users selected each one of a ring of nine circular
targets, crossing the center of the ring between each
selection (Soukoreff and MacKenzie, 2004). These targets were drawn
in a square 2D canvas (400px) that was positioned at approximately
200px from the user. Following recent
recommendations (Guiard, 2009) regarding how to vary the index of
difficulty (ID) of different blocks, we kept the diameter of the ring, and
therefore the distance between targets, constant (at 73.37° of visual
angle) and adjusted the diameter of the targets among 8 levels (ID le-
vels: 1.94, 2.39, 2.74, 3.25, 3.54, 3.92, 4.48 and 5.44, ranging from
25.9° to 1.73° of visual angle). For each of the five selection conditions
participants completed three sets of eight blocks of trials, one block per
ID. The first set of eight blocks was discarded as practice. The order of
the five device conditions was balanced in a Latin square design and the
order of blocks within sets was randomized. In total, we retained
13,680 trials for analysis: five selection mechanisms × eight ID levels
× two blocks × nine targets × 19 participants.

3.3. Materials

The study was implemented on a Google Pixel phone (1080p,
441ppi) for a Google Daydream VR headset and using the Processing
programming environment. Selections were triggered by the following
mechanisms:

Clicker. For simplicity, we use a Bluetooth keyboard as a physical
controller. Participants were able to rest their arms on the table and
position this keyboard as they saw fit. The keyboard was connected
directly to the Pixel and selections were triggered by a tap on the space
bar. In the seated pose used in this study, we note the difference be-
tween a hand-held clicker and a keyboard key sitting comfortably under
participants’ fingers is minimal.

On-device input. Users pressed either of the Pixel’s inbuilt volume
keys, located at the top left of the headset. Participants were en-
couraged to keep their hands on the buttons at all times.

Gesture. Gestures were detected using the Leap Motion, a dedicated
finger gesture sensor noted for its low latency. This was attached to a PC

and streamed events to the Pixel via UDP. The sensor was positioned on
the desk, under a user’s hand (see Fig. 1). The app responded to hand
out/in events with a distinctive background color change. We logged
hand gesture start and end times and triggered selections on gesture end
events using a Java library (Morawiec, 2019)). Participants made a
finger circle gesture to issue a selection. We selected the circle gesture
as subjective testing indicated it had optimal reliability.

Dwell. Selections occurred when participants’ gaze was stationary
(<7px) for 400ms. It enables rapid selection without the perception of
a noticeable wait. Literature on dwell times reports thresholds from 150
to 1500ms (Bernardos et al., 2016; Jacob, 1990; Miniotas et al., 2006;
Sibert and Jacob, 2000; Velichkovsky et al., 1997; vrview, 2018d), so
this figure represents the lower end of the range. The use of a short
dwell threshold better matches our Fitts task as this models movement,
not selection time.

Speech. Selection was triggered on the first spoken word; partici-
pants were asked (but not enforced) to say ”select”. We used Android’s
stock SpeechRecognizer to enable this (processing delay of ~ 132ms)
and logged all uttered words.

3.4. Procedure and metrics

The study took place in a quiet room with participants seated in
front of a desk. In each trial we measured the selection time (from the
previous selection), the location at which the selection was made (not
necessarily over the target), the correctness of the selection and re-
entries, the number of additional times (i.e., beyond the first) the user
entered the correct target prior to making a selection (Clarke and
Gellersen, 2017). After each of the five selection conditions participants
completed the Borg CR10 (Borg, 1998) scale of perceived exertion. This
captured participants’ perceived effort (head, shoulder, arm) on a scale
of 0 to 10 (0.5 increments, higher is harder). Finally, upon completing
all tasks, participants rated each selection mechanism from 5 (least
favourite) to 1 (favourite), provided written comments on their fa-
vourite and least favourite mechanisms and, rated their previous ex-
perience with these in the context of HMDs.

Fig. 1. Top: participants in the head pointing study,
interacting in the clicker (left), on-device (middle),
and mid-air gesture (right) conditions. Bottom, from
left to right: study interface for the head pointing (VR
view of ID 1.94 blocks with current target in green and
head cursor in black) and motion matching (2D ren-
dering of study graphics in the motion matching con-
dition) studies. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article.)
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3.5. Results

3.5.1. Objective measures
We first removed outliers more than three standard deviations from

the mean in selection time or selection distance from the intended
target – a total of 1.89% of trials. Mean error rates, reentries and se-
lection times (from all trials) are shown in Figs. 2 (per ID) and 3 (ag-
gregate). As expected in a Fitts’ task, performance decreased sub-
stantially on targets with larger IDs – Fig. 2 shows trials involving the
highest ID targets were quite challenging. In addition, mean selection
times from only correct trials did not differ substantially from those in
all trials (they were 7ms to 56ms faster, representing differences of
between 0.23% to 4.58%). As such, we opted to analyze the full set of
target completion times. We tested all data for normality with Shapiro-
Wilk tests. Metrics in which data were normal were analyzed with one-
way repeated measures ANOVAs, while metrics in which data failed
normality checks were analyzed with Friedman tests. For ANOVAs, we
report Greenhouse-Geisser corrected degrees of freedom in cases where
sphericity was violated (Mauchly, 1940). We use general eta squared
(η̂G

2
) to express effect size for ANOVAs and Kendall’s W for Friedman

tests. Post-hoc testing was conducted with t-tests for parametric data
and Friedman’s Aligned Ranks tests for non-parametric data. All post-
hoc pairwise comparisons include Bonferroni confidence interval ad-
justments. Main effects on these measures were all significant with
large effect sizes: errors ( =χ (4) 55.21,2 p < 0.001, W = 0.73); time
( =F (2.23, 40.08) 202.04, p < 0.001, =η̂ 0.851G

2
) and; reentries

( =χ (4) 58.67,2 p < 0.001, W = 0.78). Post-hoc testing showed on-
device led to significantly more errors than gesture and speech and
clicker led to significantly more errors than speech and dwell (all p<=
0.001). Time differed between all conditions (p <= 0.013) except for
between clicker and on-device (p = 0.117). Finally, reentries showed
significant differences for all conditions (p <= 0.015) except for be-
tween clicker and on-device (p = 0.74), gesture and speech (p = 1),
dwell and clicker (p = 0.5) and dwell and on-device (p = 1).

We also fit Fitts’ law models to the data (Soukoreff and
MacKenzie, 2004). As expected, r-squared varied substantially re-
flecting the difference in activation time for the different selection
mechanisms. The mean r-squared of individual models calculated for
each participant were: clicker (0.75), on-device (0.81), gesture (0.29),
dwell (0.37), and speech (0.38). Mean throughput was: clicker (3.96),

Fig. 2. Error rates (bars, top) and selection times (dotted bars, bottom) per index of difficulty (ID) for the Head Pointing study. Error bars show standard error.

Fig. 3. Performance results for the Head Pointing study: error rates (solid bars) and reentry rates out of 144 trials (dashed bars) – left; selection times (dotted bars,
right). Error bars show standard error.
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on-device (3.24), gesture (1.65), dwell (2.83), and speech (1.69). A
final RM ANOVA revealed these differences to be significant
( =F (2.02, 36.35) 99.89, p < 0.001, =η̂ 0.756G

2
) and all post-hoc t-tests

were also significant (p < = 0.007) except between gesture and speech
(p = 0.650).

3.5.2. Perceived exertion
Perceived exertion across conditions varied between very weak:

clicker (1.13, SD = 1.21); to weak: dwell (1.63, SD = 1.54) and speech
(1.79, SD = 1.50); to moderate: on-device input (2.97, SD = 2.54) and
mid-air gestures (2.50, SD = 1.98). A related-samples Friedman test
reveals these to be significantly different: =χ (4) 15.65,2 p = 0.004.
Pairwise comparisons reveal the clicker and dwell to be less tiring than
on-device input (p = 0.002 and p = 0.024, respectively), and the
clicker to be less tiring than mid-air gestures (p = 0.021). Only sig-
nificant differences are presented for brevity.

3.5.3. Preference
We analyzed preference data with a Friedman test, showing sig-

nificant variations in these rankings ( =χ (4) 52.32,2 p < 0.001). Post-
hoc aligned rank tests indicated that clicker and dwell led to significantly
better preference rankings than all other conditions (all p<.005). The
12 participants who picked the clicker as their favourite described it as
being the fastest (9), easiest (4), most familiar (3), most comfortable
(2), and most accurate (1) selection mechanism: ”It was easy to co-
ordinate (head) movement and press the space bar. I found that I could
hit the targets at much quicker response speeds” (P16). Similarly, the
six participants who picked dwell as their favourite described it as being
the easiest (4), the most comfortable (3), fastest (1), most accurate (1),
and most satisfying (1) selection mechanism: ”(With) dwell (it) is much
easier to select the object by just looking at (it); while other technique
(s) require some trigger” (P3). Finally, one participant rated the on-
device input as their favourite, describing it as the fastest – see Fig. 5.

The results for the least favourite selection mechanism are more
varied. The 11 participants who picked the mid-air gesture as their least
favourite described it as being the hardest and most straining to per-
form (10), the slowest (1), and highlighted a lack of user feedback (2)
and control (2). The five participants who picked speech as their least
favourite described it as the most frustrating (2) and slowest (1) se-
lection mechanism. Of these participants, two highlighted experiential
qualities of speech: P6 did not like the sound of her voice; and P11 did
not appreciate the contrast between the ”original acoustics” of his
input, and the simple digital output in the study system. P12 was
concerned that repeated speech selections could trigger a repetitive
strain injury (RSI). Lastly, three participants described the on-device
input as their least favourite due to discomfort (3): ”I thought to quit the
task” (P20). When asked to rate their previous experience with the
selection mechanisms used in the study on a 7-point Likert scale (higher
is better), participants rated their average experience with dwell at 2.00
(SD = 1.56); speech at 1.32 (SD = 0.75); clickers at 2.26 (SD = 1.45);
mid-air gestures at 1.42 (SD = 0.77); and on-device input at 2.05 (SD
= 1.65).

To sum up: based on a combination of good performance over the
full spectrum of measures (task times, error rates, exertion scores and
preferences), we highlight clicker as providing the best performance
during hands-on input and dwell as providing the best performance
during hands-free input. We opt to take these techniques forward for
further study.

4. Motion matching study

Motion matching is an emergent hands-free interaction paradigm
for VR (Khamis et al., 2018; Piumsomboon et al., 2017) and AR (Esteves
et al., 2017; Kangas et al., 2016). In motion matching, interface ele-
ments move across distinct trajectories, and users interact with these

not by pointing, but by tracking their movement with their eyes
(Khamis et al., 2018) or head (Esteves et al., 2017). Because of this
departure from pointing (and thus Fitts’ Law), we compare a head-
based motion matching implementation to the peak performing hands-
free (dwell) and hands-on (clicker) input techniques from the first study
using standard performance metrics: error rates and acquisition times.

4.1. Participants

We recruited 18 participants (8F), aged between 21 and 29 (M =
23.06, SD = 2.10). These were undergraduate and postgraduate stu-
dents at a local institution. Using a 5-point Likert scale (higher is
better), participants consistently rated their experience with head-
mounted displays at 1.

4.2. Design

The experiment followed a within-subjects design with selection
mechanism as the only independent variable: clicker, dwell, and motion
matching. The order in which participants interacted with the selection
conditions was balanced using a Latin Square, and participants com-
pleted 20 blocks per selection mechanism. The first and eleventh blocks
(the block after a small break – see Procedure and Metrics) were re-
garded as practice and not retained for analysis. Each block consisted of
eight trials, one randomly ordered selection on each of eight circular
targets. The circular targets were displayed in a square arrangement:
four at the corners of the canvas, four at each side’s midpoint. Each was
40px in diameter, corresponding to 10% of the canvas width, 9.86°of
visual angle and indexes of difficulty of either 1.98 (center) or 2.37
(corner) – see Fig. 1. These target locations and sizes were selected to
yield IDs that were as similar as possible to the lowest two ID targets in
the head pointing study (IDs of 1.94 and 2.39), in order to better
compare and contrast data between the two studies. Participants were
instructed to select the target highlighted in red (other targets were
displayed in grey). In the motion matching condition, the 10 pixel wide
moving dot travelling the contour of the intended target was displayed
in green (as opposed to grey) – these moved at 180°/s and were equally
spaced with a phase of 45°. To minimize visual search, a small line
displayed at the center of the canvas pointed towards the intended
target. Finally, trials timed out at five seconds and were logged as a
wrong selection. 7776 trials were recorded: three selection mechanisms
× eight trials × 18 blocks × 18 participants.

4.3. Materials

The VR setup (e.g., canvas size) and equipment was as described in
the previous study, as well as the clicker implementation. Two changes
were made to the earlier dwell implementation: we increased the se-
lection threshold to 1000ms, and only allowed selections to take place
when the gaze cursor was hovering over a target. These parameters are
a better representation of commercial applications (e.g., Google
Cardboard uses a 1200ms dwell time (Library, 2019)), and allow us to
explore different possible implementations of the technique. This in
turn expands our contribution by capturing additional performance and
subjective data.

The motion matching selection followed a popular implementation
(Clarke et al., 2017; Esteves et al., 2015; Khamis et al., 2018; Velloso
et al., 2016) as first described by Vidal et al. (2013), where simple
Pearson’s correlations are computed for xtarget-yaw and ytarget-pitch
relationships (yaw and pitch values calculated with
HeadTransform (2018a)). If both exceed a correlation threshold of 0.8 for
a given target, and no other displayed targets attain the same result
(either individually or via an average of both results), the target is se-
lected. The correlations operate in a rolling window of 1000ms, and start
500ms after a new set of targets is displayed (during which participants
are engaged in open-loop orientating behavior marking the beginning
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of a smooth pursuit movement). These parameters are derived from the
closest state-of-the-art implementation described in
Esteves et al. (2017). The system had a sample rate of 100Hz.

4.4. Procedure and metrics

The experiment was conducted in a quiet room with participants
seated in front of a desk. Each session started with a brief explanation of
the study, and by capturing participants’ demographics and previous
experience with HMDs. Each trial started after participants selected a
single target displayed at the center of the canvas. This not only cen-
tered participants’ head pointer prior to each trial, but also allowed
them to pause the study between trials in order to take short discre-
tionary breaks (e.g., to make adjustments to their pose). Furthermore,
participants were required to take a break of at least one minute
halfway through each condition (10 blocks). As before, and after
completing a selection condition, participants were asked to fill in the
Borg CR10 scale of perceived exertion. After all three conditions were
completed, participants rated each selection mechanism from 3 (least
fav.) to 1 (favourite) and provided written comments on their favourite
and least favourite mechanisms. Finally, data on participants’ error
rates and selection times were recorded for further analysis – no target
reentry data was captured as motion matching does not entail pointing.

4.5. Results

4.5.1. Objective measures
Shapiro-Wilk normality tests indicated our dwell results were not

normally distributed: W = 0.34, p < 0.001. As such, we opted to
conduct our analysis using related-samples Friedman tests. Effect sizes
were calculated using Kendall’s W. This revealed significant different
across error rates ( =χ (2) 27.507,2 p < 0.001, W = 0.764) and se-
lection times ( =χ (2) 36.00,2 p < 0.001, W = 1) – see Fig. 4. Pairwise
comparisons (with Bonferroni corrections) revealed that dwell pro-
duced less errors than the clicker and motion matching selection me-
chanisms (p= 0.005 and p < 0.001, respectively), but was the slowest
of the three (p < 0.001 and p = 0.008, respectively). While no sta-
tistically significant differences were found for the error rates between
the clicker and motion matching conditions (p = 0.166), participants
were significantly faster using clicker (p = 0.008).

4.5.2. Perceived exertion
Perceived exertion across conditions varied between moderate:

clicker (2.86, SD = 1.55) and dwell (2.83, SD = 1.46); to somewhat
heavy: motion matching (3.73, SD = 1.66). A related-samples Friedman
test revealed these to be significantly different: =χ (2) 6.03,2 p= 0.049.
Pairwise comparisons showed dwell to be less tiring than motion
matching (p = 0.037). Only significant differences are presented for
brevity.

4.5.3. Preference
We analyzed preference data with a Friedman test. It showed sig-

nificant variations ( =χ (2) 9.33,2 p = 0.009) and post-hoc aligned rank
tests indicated that clicker led to significantly better preference rank-
ings than motion matching (p=.002). Indeed, the majority of partici-
pants picked the clicker (10) and, to a lesser extent, dwell (7) as their
favourite selection mechanisms, for mostly the same reasons as in the
head pointing study (see Fig. 5). Interestingly, P13 favored the motion
matching approach as it allowed for coarser and broader head motions.
The same participant listed dwell as his least favourite mechanism for
the opposite reason: it required precise pointing and dwelling. Four
other participants also described dwell as their least favourite me-
chanism, mostly due to the high dwell threshold (3): ”it was incon-
venient to wait until it (triggered). I wanted to move quickly to the next
[trial]” (P2). Eleven participants picked motion matching as their least
favourite approach due to its low accuracy (5), being physically tiring
(4), and because it was hard to sync their head movement with the
moving targets (4): ”sometimes I can’t get the timing (right)” (P16).
Finally, two participants reported the hand-clicker as their least fa-
vourite mechanism as its fast nature facilitated input errors (2).

5. Discussion

5.1. Head pointing study

The Head Pointing study demonstrated the benefits of the clicker
and dwell as selection mechanisms for gaze-based HMDs. These picked
by most participants as their favourites (12 and six participants, re-
spectively – see Fig. 5) and also showed objective benefits compared to
their peers (hands-on and hands-free mechanisms). While it was not
faster, clicker did lead to greater throughput than on-device input –
suggesting it may have been more accurate and stable – and was re-
ported to be less taxing. Dwell’s superiority was also clear: while it did
not offer improvements in exertion ratings or errors, it was faster, led to
greater throughput and was more stable than the gesture and speech
methods.

Its worth speculating about the causes of some of these variations. In
the on-device condition, error rates spike as IDs increase (see Fig. 2).
This likely reflects the increasing impact of the disturbance to Head
Pointing precision caused by the physical act of pressing and releasing a
button on the headset – triggering the selection caused the head to
wobble. The acts of gesture and speech input may have added similar
physical disturbances (note the high number of re-entries for these
conditions in Fig. 3), but the protracted nature of input in these mod-
alities gave users time to re-target the cursor. While increasing accu-
racy, these long, involved targeting operations likely contributed to the
low preference ratings for gesture and speech (respectively, 11 and five
users rated these techniques are their least favourite). Finally, while
hands-on methods (clicker, on-device) provide more rapid performance
than hands-free methods, their accuracy is lower. We suggest this is

Fig. 4. Performance results for the Motion Matching study: error rates (bars, left) and selection times (dotted bars, right). Error bars show standard error.
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partly due to a speed accuracy trade-off – the use of an atomic and
highly familiar input trigger (simply pressing a button) encouraged
participants to optimize for speed over accuracy. With the more con-
strained hands-free techniques, they were unable to make this choice
(e.g., there is no way to ”dwell faster”), resulting in longer but more
accurate input.

5.2. Motion matching study

The Motion Matching study compared the peak performing hands-
on (clicker) and hands-free selection (dwell) mechanisms to motion
matching, a recent interaction technique that tracks users’ head motions
in response to moving widgets. Despite variations in the dwell im-
plementation (longer threshold, simplified target selection), the results
resemble those from the Head Pointing study: clicker was more rapid
while dwell was more accurate – indeed, dwell errors approach zero.
There were some notable differences between the two studies. Clicker
was slower in the Motion Matching study (1174 ms) than equivalent ID
level targets in the Head Pointing study (907 ms), most likely due to
participants more strongly emphasizing accuracy – in the Motion
Matching study erroneous trials were repeated, a process that penalizes
errors. This observation is supported by the reduced clicker error rate in
the Motion Matching study (4.9% vs 13.8%) for targets with equivalent
IDs.

Dwell also showed only a modest increase in task times in the
Motion Matching study – from 1735ms to 1935ms at equivalent IDs.
That is less than the expected 600ms increase due to the longer dwell
time (400 ms vs 1000 ms). We attribute this to the changes in the dwell
implementation and task – in the Head Pointing study, travel distances
were edge-to-edge, roughly twice the center-to-edge distances in the
Motion Matching study. Furthermore, in the Head Pointing study dwell
was triggered with a strict threshold for defining a stationary cursor
(less than 7 pixels of movement, 1.73° of visual angle), while in the
Motion Matching study, we used an implementation that simply re-
quired participants to remain over an on-screen target of interest
(9.86° of visual angle). These variations likely made the task easier,
partly offsetting the inevitable increase in selection times due to the
longer dwell time.

Motion matching struck the middle ground between clicker and
dwell. Errors were equivalent to those with clicker, while times were
significantly reduced compared to dwell. Obviously, this result is de-
pendent on features of the dwell and motion matching implementations
(such as the 1000ms dwell/matching time) and may not generalize to
all possible versions of these techniques. We also note that the study
suggests some interesting differences between motion matching and
conventional targeting. Specifically, both clicker and dwell show ex-
pected increases in selection time on the corner (ID = 2.37) over the
center (ID = 1.98) targets – these took between 170ms (clicker) and

224ms (dwell) more time to select. This effect is much reduced for
motion matching – differences between the corner and center targets
are just 32ms. This independence of selection time to selection distance
is a potentially beneficial property of the motion matching technique
that deserves further attention in the future.

The subjective data from the Motion Matching study reinforced the
notion that users favour the clicker and dwell techniques. Indeed, these
preferences were maintained despite an uptick in the perceived exertion
for both clicker and dwell, likely caused by the requirement to accu-
rately select targets and longer dwell threshold. We also note dwell was
still rated as requiring less exertion than motion matching. This sug-
gests that motion matching may be most appropriate for sporadic or
occasional tasks rather than protracted or continual ones.

6. Recommendations

The primary goal of this work is to elucidate the differences between
the wide range of possible selection triggering techniques that can be
applied to head gaze based pointing input. We close the paper with
concrete recommendations distilled from the studies and data we pre-
sent. We split these into recommendations for hands-on and hands-free
tasks.

6.1. Hands-on selection

Despite the increasing enterprise use-cases for VR and AR, there are
many situations in which hands-on interaction is still appropriate, in-
cluding applications that can be enjoyed at home (e.g., entertainment)
or in desktop scenarios (Sousa et al., 2017). In these situations, and
despite the obvious limitations of having to hold/carry an additional
peripheral for interaction, the clicker is the obvious choice for pro-
longed use. Compared to mid-air gestures, clicker was faster and pre-
ferred – this despite a higher error rate (albeit in a task where these
were not penalized) and use of a dedicated, low latency and state of the
art sensor to track the gestures. Compared to on-device, task times were
similar – the buttons in both cases could be pressed with similar speed.
However, the physical disturbance induced by on-device input led to
higher error rates and frustrated users. Given the ready availability of
this technique, it may be suitable for occasional use to select large,
central (or well-separated) targets, such as those that might appear on
confirmation or dialog boxes (in AR user interfaces) or facilitate tele-
portation in 360∘ VR scenes.

6.2. Hands-free selection

Dwell performs well during the hands-free input tasks we studied: at
400ms it is faster than and preferred to speech, due to it being incon-
spicuous and immune to issues such as environmental noise. At 1000ms

Fig. 5. Preference results for the head pointing (solid) and motion matching studies (dashed). Dwell implementations vary between these, using a 400ms selection
threshold in the former and 1000ms in the latter.
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and compared to motion matching, it produces fewer input errors and is
less physically taxing. Depending on the configuration of the techniques
(e.g., the timing thresholds) dwell may be slower than motion matching
– this held true for the versions examined in the Motion Matching study
reported here (i.e., 1000ms). We also note our study data suggest that
motion matching may be relatively immune to the impact of target
distance. It may be just as easy to select a distant target as it is to select
a more proximate one. We believe these results indicate that motion
matching has promise for specific types of targeting task and believe
that future work should explore the technique in more detail to improve
its design and characterize how it can best be deployed. We detail some
ideas for this in the next section.

7. Limitations and future work

A number of limitations impact our results and conclusions and
suggest avenues for future work. Perhaps most critically, neither of our
study tasks reproduce the ”Midas touch” inadvertent selection problem.
In both studies, participants did not need to engage in exploration or
search sub-tasks, targets to select were always clearly highlighted and
paths towards these targets were always free of distractors. In these
simple scenarios, the performance of techniques such as dwell are likely
over-stated – it is very difficult to inadvertently select an undesired
target, meaning that problems related to this issue are simply never
surfaced. In contrast, in more realistic systems, Midas touch selections
can be sufficiently disruptive so as to require modal solutions in which
users must explicitly active and deactivate dwell mediated selection
(Istance et al., 2008).

Extending the work in this paper with more realistic tasks featuring
distractors is a clear next step for this work. We believe the costs of
techniques like dwell and benefits of techniques like motion matching
may be more completely and clearly delineated in such tasks. We also
note the motion matching technique studied in this paper could also be
improved. This could take place both under the hood – different
matching algorithms may offer improved performance (Drewes et al.,
2018) – and also through improved design. For example, while all head
pointing techniques studied in this paper feature interactive feedback (a
cursor, color highlights when over a target), the motion matching im-
plementation lacked this type of aid. We identify designing interactive
feedback to support motion matching input as a topic for future work.

We suggest that combining dwell and motion matching (as they
only require head-motion data) is a fruitful area for future study. One
approach could look at dwell for selection of front and center controls
while motion matching could access sporadic content in the periphery
of the users’ field-of-view (e.g., settings or volume controls). This would
be particularly useful in devices with larger field-of-views than the
Google Daydream (90∘), where the large scale head movements and
sustained holds inherent with dwell could become straining. Another
approach could look to minimize the ”Midas touch” problem of dwell in
everyday AR scenarios by employing a short dwell time to trigger more
explicit motion matching controls. This would also benefit motion
matching implementations in AR by reducing the number of moving
targets in the interface at any given time, and potentially reducing false
activations during locomotion. Further, we would argue these chal-
lenges and opportunities are not restricted to AR, and could be ex-
panded to other domains where gaze input is beneficial – such as in-
teraction with smart environments and devices (Velloso et al., 2016) or
public displays (Pfeuffer et al., 2013; Vidal et al., 2013).

There are also more general limitations. We used a VR headset, and
it would be useful to verify the results and conclusions of this work with
an AR system. Based on the low error rates observed with input tech-
niques such in-air gestures (which feature highly visually salient cues in
the form of hand motions) in the Head Pointing study, we believe our
results will generalize well to AR settings. Additionally, while no par-
ticipants reported motion sickness during our studies, most likely due to
the minimal nature of the visual cues presented, future work should

explore whether input tasks in richer graphical environments are more
susceptible to this type of problem. Future work should also explore the
effect of these selection mechanism when used with more refined gaze
pointing implementations (Kytö et al., 2018).

Finally, we have identified two minor procedural limitations that
are worth highlighting. The first is that, despite its simplicity, the mid-
air gesture used might have required a longer learning phase than the
other, more familiar techniques, in the first study. The second is that,
despite no reports indicating difficulties were experienced, we did not
explicitly check whether any participants had reduced color perception.
This could have affected how able participants were to perceive the
interface cues in the second study as they were displayed in red, green,
and grey. Future studies in this area should take care to control for these
issues.

8. Conclusion

This paper presented two comparative studies examining three
hands-on (clicker, on-device input, mid-air gestures) and three hands-
free (dwell, speech, motion matching) selection mechanisms for gaze
input techniques in HMDs. We report on these techniques’ performance,
perceived exertion, and participant preference, with the goal of pro-
viding clarity and a baseline on the pros and cons of these different
selection methods. Further, we present several takeaways from these
results and highlight areas for future research. These include blended
approaches for gaze-based input involving dwell and motion matching
and studying novel implementations and feedback mechanisms for the
latter. In sum, this paper contributes empirically grounded insights
about the performance of different selection methods that can be
combined with head pointing input. Researchers, designers and devel-
opers aiming to produce usable and mature VR and AR systems can use
this data and advice to make better choices and design more usable
systems.
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