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ABSTRACT 
The small screens of smartwatches provide limited space 
for input tasks. Finger identification is a promising 
technique to address this problem by associating different 
functions with different fingers. However, current 
technologies for finger identification are unavailable or 
unsuitable for smartwatches. To address this problem, this 
paper observes that normal smartwatch use takes places 
with a relatively static pose between the two hands. In this 
situation, we argue that the touch and angle profiles 
generated by different fingers on a standard smartwatch 
touch screen will differ sufficiently to support reliable 
identification. The viability of this idea is explored in two 
studies that capture touches in natural and exaggerated 
poses during tapping and swiping tasks. Machine learning 
models report accuracies of up to 93% and 98% 
respectively, figures that are sufficient for many common 
interaction tasks. Furthermore, the exaggerated poses show 
modest costs (in terms of time/errors) compared to the 
natural touches. We conclude by presenting examples and 
discussing how interaction designs using finger 
identification can be adapted to the smartwatch form factor.   
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INTRODUCTION 
Interaction with wearable devices such as smartwatches is a 
highly constrained experience. Small screens and touch 
surfaces provide few opportunities to create powerful, 
expressive interfaces using the conventional tap and swipe 
input popularized on larger devices such as smartphones. 
This problem is both fundamental, in that users want small, 
useful, discrete wearable devices, and interesting, in that it 
raises substantial new challenges for researchers and 

designers working in the space. Indeed, as more powerful 
and mature wearables come to market, increasing attention 
in the HCI community is being devoted to interacting with 
them in non-traditional ways, such as using their on-board 
inertial sensors to detect physical movements of the watch 
[30, 32] or gestural movements of the hand and fingers 
[28]. Commercial work in this area includes the Apple 
Watch (www.apple.com/watch) and its use of pressure 
input [23] and its crown, a novel physical controller.   

While these approaches show considerable promise, the 
touch screens of smart watches remain powerful high 
fidelity sensors with a direct connection to the primary 
display surfaces of the device. As such, researchers are also 
exploring how to maximize the value of touch input on tiny 
screens through techniques such as diverse as tapping 
gestures [17], multi-touch menu systems [11] and inferring 
touch properties such as finger angle [29]. Within this 
space, one promising technique for increasing the 
expressiveness of touch input is finger identification [21]. 
At heart, this is a simple idea: if a system can process 
screen touches to disambiguate which of a user’s fingers is 
responsible for a touch, then different functions or 
operations can be assigned to each finger. A range of prior 
work on this topic has discussed the interaction and 
application scenarios enabled by this technique in contexts 
as diverse as physical buttons [23], tablets [4] and tabletop 
computers [3].  

However, while technologies to achieve finger 
identification have been achieved in fixed [8] or large 
format devices [9], they remain challenging to implement in 
small or mobile devices. In fact, most current work on this 
topic on wearables or mobiles simply instruments the 
touching fingers [5] to support system development or 
assumes instructions as to which finger should be used will 
be faithfully followed during studies [21]. While these 
approaches are effective for pursuing purely application 
design or empirical goals, they are also somewhat 
impractical – it is unlikely that real users will commit to 
wearing sensors or markers on their fingers simply to 
interact with another wearable device. Existing research to 
classify touches on small devices does exist, such as 
Harrison et al.’s [7] use of touch impact sounds to identify 
hand regions such as the fingertip, pad, nail or knuckle. 
However, little work has examined how we might use the 
properties of a touch to distinguish between fingers, rather 
than finger regions, on a small wearable device.  
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This paper aims to fill this gap by building on recent 
research showing it is possible to extract finger angles from 
the raw touch image generated by a standard capacitive 
touch screen [29]. Within this space, the contributions of 
this paper are threefold. Firstly, it proposes the idea that, in 
the constrained input poses available on a smartwatch (i.e. 
fixed to the wrist and approachable by the touching hand 
from a very limited range of angles) the touch profiles and 
angles generated by a user’s fingers may by sufficiently 
distinctive to support reliable finger identification. 
Secondly, it contributes an empirical investigation of the 
validity of this idea: two studies of common smartwatch 
input techniques capture touch in both natural input 
conditions and those in which participants are instructed to 
exaggerate the angles of their finger touches. Our analysis 
describes the touches and discusses the efficiency and 
accuracy of user input and the recognition rate for finger 
identification in these scenarios. Thirdly, this paper 
contributes a discussion of how finger identification could 
be realistically implemented in current wearables and the 
types of interaction it could support. This discussion is 
showcased with application examples including two- and 
three-finger keyboard designs (and limited validations) and 
tricons, smartwatch application icons customized for use 
with finger identification technology.  

RELATED WORK 
Smartwatches and other wearable devices are powerful 
computational tools packaged with highly limited input and 
output capabilities. Authors are responding to the design 
opportunity this represents by proposing techniques to 
enhance and enrich interactions. The scope is broad, 
spanning topics as diverse as sensing input [27] or 
producing output on the skin [12], integrating touch 
sensitive surfaces into alternative parts of a device such as 
the strap [19] or edge [16] and utilizing body sensing 
techniques such as EMG [22] or tomography [31] to infer 
user actions. In contrast, finger identification has received 
limited attention. Gupta and Balakrishnan provide the most 
thorough exploration of the potential of this technique on 
smartwatches in their study of DualKey [5], a keyboard in 
which letters are clustered in horizontal pairs. Tapping on a 
pair with the index finger selects the leftmost letter, while 
tapping with the middle finger selects the rightmost letter. 
This effectively doubles target sizes and Gupta’s 
comprehensive study highlights the resulting performance 
benefits. However, their system remains a lab prototype as 
it relies on a cumbersome finger mounted distance sensor to 
disambiguate touches by one finger from those by the other. 

Finger identification has received more attention on larger 
platforms. Attracted by the simplicity of the technique there 
is a relatively large body of research that can be broadly 
categorized into technical systems for recognizing fingers 
or user centered investigations into the design of [21], or 
performance with [4], the technique. In terms of designs, 
most proposals are variations on the idea that specific 
fingers can be used to access different functions. For 

example, one might trigger a context menu [7], or provide 
easy access to commonplace commands such as cut, copy 
and paste. In terms of evaluations, studies have catalogued 
user performance with different fingers during tapping and 
dragging tasks on, for example, tablet computers [4]. Roy et 
al. [21] provide a laudably comprehensive review this 
literature. However, we note that while this work represents 
a substantial design and empirical resource relating to 
interaction with systems capable of identifying touching 
fingers, few articles have considered the specific form 
factor of smartwatches: small touch screens mounted on 
one wrist. Data and design guidance for larger devices 
likely needs updating or refinement for small screens.  

Techniques for identifying the finger making a touch come 
in several forms. In the simplest, the finger is instrumented 
with a marker [15, 25] or sensor [5]. Another approach has 
been to infer individual finger locations in the context of 
multiple simultaneous touches based on the physical 
constraints imposed by the shape of the hand [3]. This 
technique has limited potential on the small screens of 
smartwatches. The Beats system [17], for example, accepts 
a pair of simultaneous touches on a watch and associates 
the left-most one with the index finger and the rightmost 
one with the middle finger to form sequences of tap 
gestures. However, all further position information is 
discarded, limiting the scope of the system for general 
purpose interaction. Other approaches for identifying 
fingers involve sophisticated touch surfaces capable of, for 
example, detecting the finger prints of the touching fingers 
[8, 24], or rely on advanced visual tracking systems 
positioned either under [2] or over a screen. As Gupta and 
Balakrishnan [5] note, none of these techniques is available 
or suitable for use with the current touchscreen technology 
available in smartwatches.  

To address this technological lack, this paper explores 
whether the data reported by a standard capacitive touch 
screen in terms of finger contact area and finger angle [29] 
is sufficient to identify the touching finger. Many prior 
authors have recognized the value that can be gained by 
using finger contact area as an input modality. For example, 
Wang et al. [26] discuss the elliptical nature of touches on a 
tabletop and how this can be used to create interaction 
techniques such as ray based pointing. Other authors have 
applied these ideas to mobiles. Boring et al. [1] discuss how 
changes to the profile of a thumb touch on a phone can be 
used to shift between interface modes while Rogers et al. 
[20] show that tracking finger angle can improve pointing 
performance and create interfaces that automatically adjust 
for finger occlusions or scroll through menu options based 
on pitch. Recently Xiao et al. [29] discuss the accuracy with 
which single finger orientations can be inferred using the 
raw data from a standard watch or phone touch screen. The 
goal of this paper is to build on these findings and ideas to 
create a robust finger identification system that operates 
with data from currently available touch screen technology.  



PERFORMANCE STUDIES 
The main goal of these studies was to explore the viability 
of using touch contact area to recognize fingers during 
interaction with a smartwatch. We considered three fingers: 
thumb, index and middle, as prior research has suggested 
that ring and pinky fingers are rarely deployed by users in 
touch input tasks on smartwatches [18] and, indeed, 
perform relatively poorly in situations where they are used 
[4]. In line with prior work, we conducted two studies to 
cover two common forms of touch screen input: tapping, or 
selecting targets by touching the screen, and swiping, or 
making rapid stroke gestures in cardinal directions.  

We also considered two input conditions: natural and 
exaggerated. In the natural conditions, participants 
performed input tasks in any way they were comfortable. In 
the exaggerated conditions, participants were instructed to 
make input by using the left side of their thumbs, the tip of 
their index fingers and the right side of the middle fingers. 
These poses are shown in Figure 1 (on our phone based 
study prototype) and were selected to maximize the 
distinctiveness of the touch contact profiles of the different 
fingers while also remaining convenient and comfortable in 
the context of smartwatch use. The goal of including both 
natural and exaggerated conditions was twofold. First, it 
enabled us to investigate the feasibility of inferring the 
touching finger during natural interaction. Second, it 
allowed us to characterize both the benefits of requiring 
participants to use a specific pose for input (in terms of 
finger recognition performance) and the costs of doing so 
(in terms of time, errors or comfort and workload). The 
following sections describe these studies in detail.  

System 
A wide variety of mechanisms have been deployed to gain 
access to detailed information about touch contact regions. 
These include using the standard reporting methods in the 
operating system [1], using specialized hardware such as 
fingerprint scanners [8], constructing bespoke sensor grids 
[18] and modifying the touch drivers on existing smart 
devices [10, 29]. We followed this latter approach as it 
provides high fidelity data while relying on commonplace 
and relatively high performance sensing hardware. Using a 
commodity device also supports our objective of exploring 
whether reliable finger identification is possible using 
current technology. However, as the main goals of this 
work are empirical, we opted to simplify the development 
process (in terms of better documentation and easier access 
to features such as network connectivity and storage) by 
using a region of an Android smartphone as a surrogate for 
a smartwatch. We note this is a common approach [e.g. 13] 
and that touch sensors used in both classes of device are 
reported to be very similar [29].  

As with prior authors [10], we modified the Android kernel 
to poll the touch screen driver for the touch image – the raw 
sensor data recorded by each capacitive electrode. This data 
varies with the proximity of each sensor to a touching 

finger to form a greyscale intensity image that captures the 
finger-screen contact area and, to a lesser extent, the finger 
regions directly above the screen [27]. Our implementation 
ran on a Google Nexus 5 Smartphone and captured 16-bit 
touch intensity data in an eight by eight sensor grid 
covering an area 33mm square in the top right corner of the 
phone at 33Hz. During the initial studies, we processed this 
data using flood fill based blob detection and ellipse fitting 
[18] to derive a centroid for each screen touch. The 
modified kernel source files and example applications are 
available for download (https://github.com/UNIST-
Interactions/tritap). Figure 2 shows the system in operation.  

Methods 
Twenty participants (mean age 22, nine female) completed 
the tapping study while nine (mean age 21, five female) 
completed the swiping study. They were recruited from the 
local student body via online methods and word of mouth 
and received ~10 USD as compensation. We screened for 
right-handedness. Over both studies, participants rated 
themselves as familiar with smartphones (mean 4.5/5) and 
touchscreens (mean 4.6/5) but not wearables (mean 1.4/5). 
No participant completed both studies. 

In both studies participants rested their left arms 
comfortably on a desk top in front of them and wore the 
smartphone strapped along their wrist using two 
watchbands attached to the back of the phone with Velcro. 
The top right corner of the phone was adjusted to be in a 

Figure 2. Three touches on the 8x8 33mm square touch 
sensor grid on the Nexus 5 phone. The thumb (left), index 
(center) and middle (right) fingers are touching the screen 

in the exaggerated poses. The left region of each image 
shows the sensor data generated by the touch on the right. 

Figure 1. Experimental setup: wrist mounted phone showing 
four target tapping condition and exaggerated touches with 

thumb (A), index (B) and middle (C) fingers. Close up 
including annotations of sensor region and bevel sizes (D).    



typical location for a watch: center of the wrist, just back 
from the hand. It also had the smallest possible bevels at its 
base (~3mm) and right edge (~10mm). A 3D printed cover 
obscured the rest of the phone and served to indicate the 
study touch area to participants. Figure 1 shows this setup, 
including annotations showing bevel sizes. All content in 
the study was shown in the 33mm square region used for 
data capture and each trial took the same form. First 
participants tapped the screen to start. A hand graphic 
highlighting which finger to use was then presented for 
1000ms, followed by the experimental trial. This took the 
form of a grid of targets in the tapping study and a single 
target and direction in the swiping study. The instructions 
are illustrated in Figure 3. As with prior work [21], we did 
not independently verify if participants used the requested 
finger in each trial. The task is simple and prior work 
suggests the compliance rate will be very high.  

In both studies all participants completed natural input 
conditions prior to exaggerated conditions. This unbalanced 
repeated measures design ensured that the instructions 
given about poses in the exaggerated conditions did not 
impact the touches recorded in the natural conditions. Both 
studies were composed of sequences of identical trial 
blocks. In the tapping study three were three blocks, the 
first of which was treated as practice and discarded. In the 
shorter swiping study, there were five blocks, the first two 
of which were treated as practice and discarded. Within 
each block in both studies trials were delivered in a random 
order and participants were required to repeat error trials.    

In the tapping study, two target sizes were used: a 2x2 grid 
and a 3x3 grid, corresponding to targets of 13mm and 
8.25mm square. There was a 3mm border around the targets 
and an inter-target spacing of ~1mm. Each block of trials 
was composed of a set of trials in the 2x2 grid and a set of 
trials in the 3x3 grid. The order of the sets was balanced 
among participants. In both sets, participants were required 
to complete six trials per target, three with each finger. In 
total, 6240 trials were retained for analysis (20 participants 
x 2 conditions x 2 blocks x (9+4) targets x 3 fingers x 2 
repetitions). In the swiping study, each block consisted of a 
single set composed of two repetitions of each of the three 
fingers completing a stroke from one on-screen target to 
another in each of the four cardinal directions. The required 
stroke distance was always 2cm. In total, 1296 trials were 
analyzed (9 participants x 2 conditions x 3 blocks x 3 
fingers x 2 repetitions x 4 directions). Stroke direction was 
not treated as an independent variable.  

For each trial we recorded: the preparation time, the span 
between the start of each trial and the first touch to the 
screen; the touch time, or period in which the finger was in 
contact with the screen; the error rate in terms of successful 
completion of the requested interface operation (e.g. 
selecting a button) and; the stream of 8x8 raw sensor data. 
In order to acquire reliable data, all touches were required 
to generate at least three packets of sensor data – given the 

system’s 33Hz update rate, this meant ~90ms of touch time. 
In trials when the user touched the screen for less than that 
time, they were required to repeat the trial, and no data or 
targeting error was recorded. The NASA TLX was used to 
capture workload after the natural and exaggerated 
conditions were completed in both studies.  

Performance Results 
Initial analysis of the data focused on the fundamentals of 
performance: time, errors and workload. Specifically, we 
report on time and error data per finger in the natural 
condition in order to contrast this smartwatch data with that 
derived from related studies on larger form factors such as 
tablets [4, 21]. We also compare data in the natural 
condition with that in the exaggerated condition to 
understand the impact of requiring the user to adopt specific 
finger poses. Finally, in the tap study, we also examine the 
differences between the small and larger targets. All 
analyses, except where otherwise mentioned, were factorial 
RM ANOVA incorporating Greenhouse-Geisser corrections 
to adjust for sphericity violations and followed-up, if 
required, by post-hoc t-tests incorporating Bonferroni 
corrections. We also report effect size for ANOVA results 
as partial-eta squared (hp

2). For brevity, only significant 
results at p<0.05 are reported.  

Figure 4 shows the preparation and touch time data from 
the tap study. Preparation time showed two significant 
interactions: number of targets by finger (F (2, 38) = 4.094, 
p<0.05, hp

2=0.177) and condition by finger (F (2, 38) = 
40.44, p<0.001, hp

2=0.68). All main effects were also 
significant: condition (F (1, 19) = 20.067, p<0.001, 

Figure 3. Study instructions. Left: the icon used to index 
what finger should touch the screen (index in the example). 
Center: the 2x2 and 3x3 button grids, each with one target 
highlighted in blue. Right: an example swipe instruction to 
drag the red target to the white one. All were shown on the 

33mm touch screen area used in the studies. 

Figure 4. Mean Preparation and touch times from the tap 
study by finger and condition. Bars show standard error. 



hp
2=0.521), number of targets (F (1, 19) = 111.427, 

p<0.001, hp
2=0.854) and finger (F (1.46, 27.8) = 58.5461, 

p<0.001, hp
2=0.775). Interpreting these results in terms of 

the three strongest effects, we can say that selections of the 
smaller targets required more preparation time and that this 
effect was stronger in the exaggerated condition and 
specifically with the thumb and middle fingers. The touch 
time data showed fewer differences, but a similar story. 
Only the condition by finger interaction (F (1.049, 19.93) = 
15.899, p=0.001, hp

2=0.456) and main effects of condition 
(F (1, 19) = 10.404, p<0.01, hp

2=0.354) and finger (F 
(1.055, 20.042) = 15.912, p=0.001, hp

2=0.456) attained 
significance. This suggests that the interaction is the key 
effect in this case and the difference can be simply 
explained by the increased touch time in the thumb and 
middle finger trials in the exaggerated condition.  

Figure 5 shows preparation and touch time for the swipe 
study. All preparation time and touch time comparisons 
were significant. For preparation time the figures are: 
interaction (F (2, 16) = 21.706, p=0.001, hp

2=0.732) and 
main effects of condition (F (1, 8) = 23.186, p=0.001, 
hp

2=0.743) and finger (F (2, 16) = 26.627, p=0.001, 
hp

2=0.769). For touch time, these data are: interaction (F 
(1.27, 9.734) = 32.687, p=0.001, hp

2=0.803) and main 
effects of condition (F (1, 8) = 21.151, p=0.002, hp

2=0.726) 
and finger (F (1.147, 9.177) = 31.213, p=0.001, hp

2=0.796). 
The interactions are again the dominant effects and these 
data reinforce the findings from the swipe study that the use 

of exaggerated poses for the thumb and middle fingers 
negatively impacted task completion times.   

Error rates are shown for both studies are shown in Figure 
6. Errors in the tap study did not feature normal 
distributions – the mode for all bar one combination of 
conditions was zero. As such, we analyzed these data with 
three separate Friedman tests, one for each variable. All 
three returned significant results: finger (χ2(2) = 12.5 p = 
0.002), number of targets (χ2(2) = 20.0 p < 0.001) and 
condition (χ2(2) = 10.889 p = 0.001). Follow-up Wilcoxon 
tests indicated that the index finger resulted in significantly 
lower error rates than the thumb (Z = -3.057, p = 0.002) and 
middle finger (Z = -3.7, p < 0.000). Beyond confirming the 
additional challenge of smaller targets, these results also 
indicate that tap performance is optimal with the index 
finger and natural input condition. Although we were not 
able to examine interactions, the chart suggests that these 
effects are largely due to the spike in error rates with the 
thumb and middle finger when completing trials with the 
smaller targets. Error rates at other times remain relatively 
low. In contrast to these variations, error data in the swipe 
study were fairly flat. They were also somewhat higher, 
most likely due to the fact the compound dragging task was 
more challenging, and distributed more normally. As such, 
we analyzed them with a single three-way RM ANOVA. 
However, no comparisons in the swipe study reached 
significance at the p<0.05 level.  

Finally, TLX data are shown in Figure 7. In the interests of 
brevity, we describe overall workload as a representative 
measure. This data was analyzed with matched pairs t-tests 
to contrast performance in the natural and exaggerated 
conditions in both studies. The results indicate that the 
natural conditions received lower ratings of workload than 
the exaggerated conditions (both p<0.001), mirroring the 
trend suggested in the chart.  

Classifier Results 
In order to build a finger classifier for the touch images, we 
first selected a single touch image from the temporal center 
of the data for each trial. This is because finger touch 
profiles at the start and end of a touch (the moment a finger 
touches or release the screen) may vary substantially from 

Figure 5. Mean Preparation and touch times from the 
swipe study by finger and condition. Bars show std. error. 

 

Figure 7. Mean TLX workload scores from both tap and 
swipe studies by condition. Bars show standard error.  

 

Figure 6. Error rates from both tap and swipe studies by 
finger and condition. Bars show standard error.  



those during the middle portion of a touch [26], when the 
finger is fully in contact with the screen surface. We wanted 
to exclude these transient data points. We then generated 
ellipses for all these touches using both blob tracking [18] 
and image moments [29] approaches. Ellipses were defined 
as angle, major and minor length and eccentricity. In the tap 
condition, we also recorded the x and y center with respect 
to the current target, while in the stroke condition we just 
logged the raw center position. Visual inspection revealed 
the image moments led to ellipses that better matched the 
raw data, most likely due to the fact that the blob tracking 
approach thresholds the image to black and white rather 
than considering it as a greyscale image. Following prior 
authors [10, 29] we also applied several gamma corrections 
to the image to enhance the ellipses, although we found 
different parameters more effective. Specifically, we 
created three adjusted images: transformed to the power 
three; thresholded at 5% of the maximum reported data 
value then transformed to the power three and; thresholded 
and log transformed. Figure 8 depicts an example of the 
four touch images generated and Figure 9 shows the mean 
ellipses derived from all the raw images for both natural 
and exaggerated touches in both the tap and swipe studies.  

We used this data to construct recognizers for the touching 
finger using Weka [6]. All recognizers were built using a 
ten-fold cross validation process and Random Tree or 
Random Forest decision trees. We selected these techniques 
as they are mature and relatively quick to execute (so 

suitable for small devices). In the following description 
figures and statistics are included for clarity, but we note 
that Table 1 summarizes all the content reported in terms of 
recognizers, datasets, attributes and results.  

Visual inspection of the raw touch data indicates touches in 
the exaggerated condition are highly distinctive, while those 
in the natural condition show substantial overlap. 
Accordingly, we first constructed static recognizers based 
on all data from the exaggerated conditions in each study. 
For the exaggerated tap data, class-wise histograms showed 
the attributes of eccentricity and orientation had high 
discriminatory power. We used these attributes to construct 
a simple three level Random Tree and achieved a mean 
accuracy of 98%. However, applying the same approach to 
the swipe data led to a lower mean accuracy: 92.3%. In 
addition, class-wise performance varied considerably 
(Kappa: 0.88), with the middle finger at 96.3% accuracy 
and the index finger at 86%. This suggests that the dynamic 
touches in the swipe study are harder to classify than simple 
taps. In order to increase performance, we constructed a 10 
tree Random Forest using the full description of the ellipses 
from the raw data set: position, size, angle and eccentricity. 
This attained a mean accuracy of 97.7% (Kappa: 0.96). We 
believe these figures are sufficiently high to reliably 
identify fingers if users are instructed to use exaggerated 
touches on a smartwatch.  

Unsurprisingly, applying these relatively simplistic 
approaches to data from the natural conditions, where we 
expect both a greater diversity of touches and a less 
distinctive set of features, resulted in lower accuracies. To 
boost accuracy, we first created static models using all 
ellipse attributes from our four data sets, an approach 
similar to Xiao et al. [29], and increased the number of 
Random Forest trees to 100. For the tap data, this led to an 
overall accuracy of 68%. Class-wise performance was split 
(Kappa: 0.52) with the thumb at 88.1% and the index and 
middle fingers showing lower performance (53.8% and 
62.1%, respectively). Following Wang et al.’s [26] 
observation that touch profiles on screen are time varying, 
we also examined performance with this recognizer on the 
subset of the tap data extracted from longer trials – those 
that recorded at least 150ms, or five packets of data. In total 
this was 1568 trials (50.2% of the original set), spread 
evenly over the three finger classes. This led to a modest 
improvement in the mean recognizer performance to 
70.6%. Finally, we explored the impact of individual 
differences on performance by generating separate per-user 
models (using a 10-tree random forest on all data from the 
normal touch image) yielding a mean accuracy of 79.4%, 
again with best performance for the thumb (93.4%) and 
lower performance for the index (70.3%) and middle 
(74.4%) fingers. Applying these same approaches to the 
swipe data led to lower figures: the mean accuracy of the 
per-user models was 72.1%, maintaining the trend in which 
the thumb is more distinctive (83.8%) than the index 
(65.3%) and middle (67.2%) fingers.   

Figure 8. The four touch images used for classification. 
Left: raw-image, left-center: power3, right-center: 

thresholded-power3 and right: thresholded-log. Red 
ellipses are calculated from each figure’s image moments. 

Figure 9. Mean ellipses from the raw touch image for each 
study and finger. Standard deviations for angle and 

major/minor axis length are shown via the arc and bars. 
The red dot marks center of the target and displacement 

from the center of the ellipse marks the mean center 
position; red bars show its standard deviation.  
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Discussion 
Mean performance in the tap study was relatively fast and 
accurate compared to prior work documenting performance 
on smartwatches [e.g. 13]: overall mean task time was 
947ms and error rates were 2.1%. The more complex swipe 
actions, which took the form of a drag between two targets, 
took longer and yielded more errors: 1617ms and 6%, 
figures that are again consistent with prior work [4]. It is 
informative to compare this data with Goguey et al.’s [4] 
and Roy et al.’s [21] recent examinations of different finger 
input on tablets. Differences in study design and objectives 
make direct time comparisons challenging (Roy terminates 
time measurement on first screen contact, while Goguey’s 
work examines the span of a pair of screen contacts), but 
both articles report performance variations for different 
fingers. Data on thumb, index and middle during tapping 
and stroking reveals temporal and error data follow the V-
shape also observed in the current study: performance is 
optimal with the index finger. Error rates for tap in these 
articles are reported in the range of 1.9%-3.2%, figures 
consistent with all bar the smallest targets in the 
exaggerated input condition. These comparisons suggest 
that performance in the current study was typical and serves 
to confirm that findings on finger input reported in prior 
work on tablets also applies to the smartwatch form factor.  

Beyond establishing this baseline, the main objective of 
capturing time/error data in the current studies was to 
explore the costs incurred by requiring users make specific 
finger poses during interaction. These costs are clear: in the 
tap study, preparation times edge upwards (from 704ms to 
824ms) when users have to make touches in specific poses; 
touch times nearly double (from 167ms to 318ms) as they 
actually make these contacts. In the swipe study, time data 
show similar trends. Error data tells a somewhat more 
complex story, with data remaining relatively flat when 
tapping large targets and during swipes and spiking 
dramatically in selection tasks with smaller targets. This 
suggests that finger identification techniques based on 
touch contact profiles might be best applied to tasks 
involving coarse-grained targeting actions. Finally, TLX 
data confirm these variations caused participants to feel 
increased levels of workload in the exaggerated conditions.  

Despite these costs, we note that performance remains 
within acceptable levels in exaggerated study conditions: 
mean task times of 1142ms (tap) and 2022 (swipe) and 
error rates of ~0-5%. Furthermore, variations in workload 
(and other data) need be treated with caution due to the fact 
that the natural condition always preceded the exaggerated 
condition. While this design prevented the exaggerated 
instructions from biasing natural behavior, it may mean that 
fatigue is artificially inflating differences. Evidence to 
support this idea comes from the fact that the lowest 
workload scores were recorded in the first condition 
administered in the more complex but shorter swipe study. 
We also note that workload levels remain generally low – 
from 3-10 out of 20 – across the whole study. This suggests 

participants never felt the tasks to be high demand. In sum, 
while the costs of using specific poses for finger 
identification are clear, their magnitude is relatively limited. 
While these costs may make the technique unsuitable for 
highly frequent interactions (like the repeated and 
prolonged tasks in the studies), we argue they likely remain 
acceptable for the more sporadic use scenarios that are 
more typical of genuine device operation in the real world.  

The flipside of documenting these costs to performance is 
an exploration of the benefits of exaggerated finger poses 
for finger recognition. These are powerful. Recognizers in 
the exaggerated conditions are simple and high accuracy 
(~98%). This suggests that touches made under these 
constraints could be effectively deployed in real interfaces. 
Results for recognizers in the normal conditions are less 
clear cut. Although the 72.1% (swipe) to 79.4% (tap) mean 
accuracies achieved in models created for each user show 
promise, they are clearly insufficient for deployment in 
realistic interfaces. Performance with static models 
covering the whole participant population is worse yet. 
However, examining the class-wise error rates suggests the 
picture is more nuanced. Specifically, the thumb can be 
identified relatively reliably (up to 93.4% with the per-user 
models) while the index and middle finger remain 
challenging to distinguish (70.4%-74.7%). Furthermore, the 
confusion matrix (not pictured) from the per-user tapping 
models reveals that thumb and index finger taps are cross-
classified only 2.8% (thumb as index) and 3.1% (index as 
thumb) of the time. This indicates that it may be possible to 
create reliable finger identification systems using our 
approach if only the thumb and index are considered. As 
such, we note that while it would be infeasible to use our 
system to directly enable interfaces such as Gupta and 
Balakrishnan’s [5] index plus middle finger keyboard, it 
might be possible to adapt these interfaces to leverage the 
optimal performance of our recognizers via, for example, 
the use the thumb, or by requiring exaggerated touches. 
This observation highlights a critical point: the design of 
finger recognition interfaces needs be informed by the 
properties of the underlying recognition system.   

Table 1. Results from the machine learning models 
constructed to analyze touch shape during tap and swipe.  

 



The remainder of this paper explores this issue: given the 
user performance constraints captured and recognizer 
accuracies documented, what interface designs are useful, 
effective and feasible? We investigate this issue in two 
ways. Firstly, inspired by the DualKey system [5], we 
implement and study two finger-identification powered 
keyboards. The goal of this work is to understand real 
world performance with the static recognizers and input 
modes documented and proposed in this paper. Rather than 
just relying on the data from the studies, we use this 
complex task to push the boundaries of the system and 
observe how recognizer and user performance instantiate 
and interact in a more realistic task incorporating, for 
example, immediate graphical feedback relating to the 
outcomes of a user’s actions. We close by providing a more 
general discussion that consolidates all the work in the 
paper into practical recommendations and design examples.  

DI-TYPE AND TRI-TYPE KEYBOARDS 
We created two smartwatch virtual keyboards that use static 
natural (100 tree random forest) and static exaggerated 
(random tree) tapping models generated from the data 
captured in the first tapping study. For natural taps, we 
created Di-Type, a dual finger design, with two letters 
marked on every key. Tapping with the thumb recorded the 
leftmost letter and tapping with the index or middle finger 
recorded the rightmost letter. This reflects the fact that the 
natural model recorded higher accuracy for the thumb and 
lower scores for the index and middle fingers. For the 
exaggerated touches, we placed three letters on each key to 
create Tri-Type. The leftmost key was activated by the 
thumb, the center one by the index and the right one by the 
middle finger. This keyboard requires participants to mimic 
the touch poses used in the exaggerated conditions of the 
studies. The keyboards were both ordered alphabetically to 
facilitate novice users in the task of locating letters. Where 
possible we also used common key arrangements, such as 
the 3x3 arrangement of letter triples in Tri-Type (see Figure 
10). Both keyboards were 33 x 33mm in size. They featured 
a 2.1mm border, an inter-key spacing of 0.6 mm and a text 
display bar at the top with a height of 4mm. The buttons 
divided up the remaining space equally: 6.75mm x 5.75mm 
and 6.75mm x 7.85mm, respectively, for Di-Type and Tri-
Type. They are both shown in Figure 10.  

We performed a limited evaluation of these systems with 11 
participants (mean age 21, six female). All participants 
entered 30 randomly selected sentences from Mackenzie et 
al’s [14] phrase set using both keyboards. As with the 
earlier studies participants always used the natural Di-Type 
system first. The first 15 phrases entered with both 
keyboards were considered practice and not analyzed. 
During their initial use of the keyboards, participants were 
encouraged to explore the keyboard, the novel finger-
identification input scenario and the finger recognition 
process freely for up to 30 minutes. In the natural condition, 
they were not given formal instructions on how to touch the 
keyboard, but an experimenter did demonstrate how to use 

the keyboard if requested. In the exaggerated condition, the 
finger poses were demonstrated to participants. In total the 
experiment took approximately 90 minutes per participant 
and each was compensated with ~15 USD in local currency.  

The goals of this study were more focused on validating the 
recognition performance than on text entry performance. As 
such we logged raw Words Per Minute (WPM) to support a 
basic comparison with prior work [5] and asked participants 
not to correct any errors. The primary measures were then 
calculated from the text streams. We classified each 
character as either correct, or as a wrong-key error (meaning 
the wrong keyboard key had been selected) or a wrong-
finger error (meaning that the wrong finger had been used 
or recognized). If participants entered additional or 
insufficient characters in a string, this was treated as an 
error and they were required to enter another string in order 
to complete the study. They could also tap the top of the 
keyboard to cancel a trial at any time.  

Results and discussion 
Over the course of the study a total of 8164 characters were 
entered and retained for analysis. Participants achieved a 
mean of 8.08 (SD 0.78) raw WPM with Di-Type and 7.53 
(SD 0.87) raw WPM with Tri-Type, figures that a paired t-
test revealed were not significantly different from one 
another. These figures are somewhat slower than those 
recorded in the initial sessions of Gupta and Balakrishnan’s 
[5] DualKey – they report mean WPMs of around 10.8. 
There are many possible explanations for this. One is that 
the finger recognition system used in the studies took 
longer for users to operate because of, for example, its 
reliance on the thumb, or its use of three fingers or specific 
poses. We also note that while our participants were 
engaged in study at an institution whose language of 
instruction is English, none were native readers of Latin 
characters. A dedicated comparison study with an 
implementation of both systems would be required to 
understand the cause of these differences. Instead, we note 
that the WPM figures indicate participants were able to type 
using both systems at a reasonable speed on a tiny screen.  

Figure 10. Di-Type (left) and Tri-Type (right) keyboards. 
Thumb taps selects the leftmost key. In Di-Type, the index 

or middle finger select the right key. In Tri-Type, index 
selects the center key and middle the right key. 



More interesting are the error results. First, we recorded a 
mean of 1.45 (SD 1:87, median 1) sentences with an 
incorrect number of characters. Participants also cancelled 
entry processes when they observed extra characters – on 
average 4.13 times, a distribution skewed by one participant 
who frequently performed this behavior (SD: 8.2, median: 
1). We did not analyze these trials further, but their 
presence does indicate that participants did at times cancel 
tasks on noticing errors involving entry of extra characters, 
potentially skewing the data towards more successful trials. 
Given the relatively infrequent occurrence of this behavior, 
we do not believe it exerted a strong effect on the study. 
Wrong-key errors were low thorough the study, running at 
means of 1.7% (SD: 1.2%) with Di-Type and 1% (SD: 
0.9%) with Tri-Type. A matched t-test revealed these 
figures were not significantly different. This indicates that 
participants were able to select the small keys used in the 
keyboards with a very high degree of accuracy and 
regardless of the use of the exaggerated touch pose. Wrong-
finger errors were more commonplace. Means per 
participant were 8.3% (SD 4.4%) with Di-Type and 10% 
(SD 3.8%) with Tri-Type. We note these figures include 
genuine input mistakes – situations when a user actually 
tapped with the wrong finger. A paired t-test revealed no 
difference in the wrong-finger rate between the keyboards.  

Figure 11 shows the overall mean wrong-finger rate (per 
key) for each keyboard and finger. There are substantial 
variations among the fingers, with the index finger being 
recognized most accurately. Looking at the data in detail, 
we observed a disproportionate number of thumb wrong-
finger errors in the bottom row of keys. In the single Di-
Type letter key on the bottom row, thumb input logged a 
42% wrong-finger rate. In Tri-Type, this ran at a mean of 
24% wrong-finger errors for the bottom three keys. This 
suggests it was highly challenging to correctly identify the 
thumb at the bottom of the screen, an effect that was likely 
not observed in the main studies due to their larger targets. 
If errors from the bottom row are removed overall wrong-
finger rates for the thumb drop from 10% to 7.3% for Di-
Type and, more substantially, from 9.7% to 2.3% for Tri-
Type. This problem impacted participants: in post-study 
comments, they indicated a preference for Di-Type due to a 
combination of the fewer fingers required to operate it and 
problems acquiring bottom row targets with Tri-Type.  

In sum, this study shows our approach to finger 
identification has considerable promise. Static finger 
identification models generated from the tapping data of 
one set of participants enabled a second set to reasonably 
successfully and rapidly enter text, a challenging input task. 
Although mean accuracy for each keyboard was in the 
range of 90%-92% (see Figure 11) and clearly lagged 
behind systems that use dedicated hardware [5], we note 
that these figures incorporate actual user mistakes and also 
expect that redesigning the keyboard to avoid trouble spots 
such as the bottom of the screen and integrating customized 
per-user recognizers can improve performance in the future.  

RECOMMENDATIONS AND DESIGNS 
Moving beyond this validation, the user and recognizer 
performance data captured in the studies are rich enough to 
support a range of practical recommendations about how 
finger identification using capacitive touch profiles could 
be best applied to designing interfaces on smartwatches. 
We break these down into key themes.  

Fingers 
Prior authors have documented how performance with 
different fingers varies in touch tasks [4, 21]. The current 
work confirms this is also true on smartwatches. However, 
recognizer performance also impacts design choices. The 
work in this paper clearly indicates that taps with the thumb 
are distinct from other taps – relatively high recognition 
accuracy could be achieved with no prior instructions and 
no changes in task performance and workload. Therefore, 
any system requiring only two fingers should first consider 
a design that discriminates between the thumb and other 
digits as the most practical and comfortable approach. 
Furthermore, results (and stated preferences) from our Di-
Type and Tri-Type prototypes seem to suggest that less is 
more and that systems should use as few fingers as possible 
in order to achieve their objectives. Operating a system with 
two fingers is easier for users to deal with than three.  

Targets 
In the main studies in this paper, performance with thumb 
and middle finger input decreased with smaller targets; 
index finger input was unaffected. This trend was 
particularly prominent with the exaggerated poses. This 
suggests that finger identification technology can be most 
effectively applied to relatively large targets. On 
smartwatches, with their limited screen space, this may 
serve to restrict effective systems to specific types of 
content such as application icons, or continuously available 
actions such as a back function. While this effect was not 
evident in the final typing study, we did observe that 
recognition performance dropped substantially during 
thumb touches on the bottom of the screen – another risk 
for small targets is that proximity to screen edges may mean 
that full touch contact areas cannot be accurately captured. 
If small targets are used (and the typing study suggests that 
may be viable), then they should be situated away from the 
bottom and right edges of a watch screen.  

Figure 11. Mean percentage wrong-finger errors (by key) 
in Di-Type & Tri-Type keyboards. Includes mean and per 

finger data for both keyboards. Bars show Std. Dev. 



Actions 
Slow and simple touches can be more accurately 
recognized. Specifically, in the natural tapping study, the 
fingers making touches over 150ms were classified 2.8% 
more reliably the full set of touches. Due to the length of 
touches captured in that study (mean of 150ms for the index 
finger) it was not possible to explore whether longer 
touches achieved greater gains. However, we also note that 
more complex actions, even if they are prolonged (such as 
the movements in the swipe study), will likely result in 
greater variability in touch contact area and lower 
classification accuracy. To be reliable, finger identification 
systems should therefore rely on techniques such as dwell 
thresholds before triggering classification processes. This 
kind of technique may also serve to lower false positive 
rates – touches under a certain duration are all treated as the 
default regardless of the touch contact area. Dwell 
thresholds could also be used to combine finger 
identification with more complex input techniques like 
swipe – classification could take place during the dwell and 
a subsequent movement could then further specify input.  

Building on these discussions we present two interactions 
designs that adapt themes for interaction design with finger 
identification systems presented in prior work. The first of 
these is tricons, an idea that relates to the multiple finger 
icons discussed by, for example Roy et al. [21].  Tricons 
enhance applications icons by providing multiple points of 
entry. For example, a fitness application could be opened as 
normal using a regular tap, have an exercise routine start 
with a middle finger tap and open settings with a thumb tap. 
Equally, a clock could access alarm, timer or main 
functions depending on the tapping finger. This kind of icon 
matches our design recommendations as they are relatively 
large, accessed sporadically and usually situated away from 
the extreme edges of the screen. Figure 12 (left) shows two 
possible tricon designs. The second design is a context 
menu, similar to those proposed by Harrison et al. [7]. We 
envisaged this design for a music player and operating as 
follows. A user calls up the menu with an easily 
recognizable thumb tap that is held against the screen. After 
a short dwell, a context menu appears around the thumb and 
subsequent horizontal swipes navigate between tracks while 
vertical movements adjust volume (Figure 12, right). All 
normal controls of the smartwatch that respond to regular 
touches are unaffected. Rather than as fully novel 
contributions, we present these designs as customized 
versions of existing concepts that fit the capabilities of the 
functional finger recognition system proposed in this paper.  

DISCUSSION AND CONCLUSIONS 
This paper contributes the idea of recognizing the finger 
touching a smartwatch from the profile it generates on the 
device’s capacitive touch screen. It also contributes data 
that explores the tradeoffs between finger recognition 
accuracy and user input performance in natural and 
exaggeratedly posed touches and validates its approach in a 
challenging text entry task. Taken together this work is a 

first characterization of the feasibility of finger 
identification using standard smartwatch touch screens and 
a comprehensive investigation of the practical limitations of 
the technique – its strengths, weaknesses and how these 
impact what can be built with it.  

There are a number of interesting future avenues for 
research. This paper focused on the recognition of fingers 
from single frames of touch data. Exploring features than 
span entire screen contacts is an obvious next step. A 
prerequisite for achieving this is likely a faster sensor – the 
33Hz sensor data used in this work resulted in rapid touches 
leaving few records. More empirical work is also required 
in terms of data capture – the lab studies in this paper suffer 
from typical issues of ecological validity. While we did 
focus on a common pose (seated at a desk), wearables are 
clearly used much more diversely. Contexts such as use on 
public transport or during discrete operation under a desk or 
on a lap are valid and worth studying. To do so will require 
porting the system to a genuine smartwatch (as in [29]) and 
this is a clear next step for this project. We also note that 
the work in this paper deals with sensing finger touch 
profile and angle – it may be possible for users to operate 
the system simply by angling their fingers appropriately to 
form different shapes [1, 18]. Exploring how these closely 
related input modalities could complement one another 
would be another interesting next step for this work.  

In conclusion, finger identification is a simple, effective 
input technique that can yield many benefits on wearables. 
This paper provides a first examination of how it might be 
enabled using standard capacitive touch screen technology. 
We believe the ideas, techniques and recommendations we 
present can guide designers and developers as they 
introduce finger identification into real devices.  
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Figure 12. Example finger identification enabled interfaces. 
Left shows two tricons, icons that respond differently to each 

finger. Center left shows a middle finger touch that would 
start an exercise routine on an activity tracker. Center-right 
depicts a typical music player interface. Right shows how a 

touch with the thumb can bring up a menu to switch between 
tracks (swipe left/right) or adjust volume (swipe up down). 
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