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PIN and pattern lock are difficult to accurately enter on small watch screens, and are vulnerable against guessing attacks. To
address these problems, this paper proposes a novel implicit biometric scheme based on through-wrist acoustic responses. A
cue signal is played on a surface transducer mounted on the dorsal wrist and the acoustic response recorded by a contact
microphone on the volar wrist. We build classifiers using these recordings for each of three simple hand poses (relax, fist and
open), and use an ensemble approach to make final authentication decisions. In an initial single session study (N=25), we
achieve an Equal Error Rate (EER) of 0.01%, substantially outperforming prior on-wrist biometric solutions. A subsequent
five recall-session study (N=20) shows reduced performance with 5.06% EER. We attribute this to increased variability in
how participants perform hand poses over time. However, after retraining classifiers performance improved substantially,
ultimately achieving 0.79% EER. We observed most variability with the relax pose. Consequently, we achieve the most reliable
multi-session performance by combining the fist and open poses: 0.51% EER. Further studies elaborate on these basic results.
A usability evaluation reveals users experience low workload as well as reporting high SUS scores and fluctuating levels of
perceived exertion: moderate during initial enrollment dropping to slight during authentication. A final study examining
performance in various poses and in the presence of noise demonstrates the system is robust to such disturbances and likely
to work well in wide range of real-world contexts.
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1 INTRODUCTION
Smartwatches support a very wide range of applications including many that are privacy or security critical, such
as those that monitor or record health data, process or mediate financial transactions, or serve as a trusted device
that enables access to other devices such as smartphones or laptops [21, 38]. As these applications proliferate, it is
becoming increasingly important to secure access to smartwatches. However, explicit smartwatch authentication
schemes, such as PIN or pattern, suffer from critical issues in terms of both usability and security. They suffer
from the fat-finger problem [39]: displayed targets are small and obscured by a user’s own finger leading to
prolonged entry times and high error rates. This is particularly problematic for the precise input required during
explicit authentication [33]. In addition, and partly to mitigate these usability issues, people tend to choose
easy-to-remember and easy-to-enter PINs and patterns that are vulnerable to guessing attacks [3, 6, 28, 43].

To overcome these security and usability issues, recent research [7, 24, 46] has focused on developing implicit
biometric authentication schemes for smartwatches. Cornelius et al. [7] proposed a solution that captured wrist
bio-impedance (tissue response to electrical current), data that should vary with the arrangement of relatively
stable internal structures within the wrist. A single day field study on eight participants achieved 13.10% average
equal error rate (EER). Watanabe et al. [46] measured ultrasonic sound signal reflection on the wrist and used this
data to authenticate users. They recorded signals during four different hand poses, and combined these to attain
an average EER of 2.94% with nine participants. Recently, Lee et al. [24] study the authentication performance
that can be achieved with wrist vibrations generated by the haptic feedback motors built into a commercial
smartwatch. In a two session lab study of 20 participants, they achieve an EER of 1.37% in their first session, and
apply this decision threshold to achieve a false rejection rate (FRR) of 4.99% in their second session.
While this work showcases the potential of wrist based biometrics, we note a number of limitations in the

evaluation methods it deploys. Perhaps most importantly, while this body of work has proposed combining
multiple hand poses to improve authentication accuracy, it offers very limited insight into the details of such a
scheme. We know little about how sensitive systems are to hand pose variations, how accurately and reliably
users can produce various hand poses, and how users respond to the idea of performing one or more specific
hand poses to unlock their watch. This paper demonstrates that through-wrist biometrics can be highly sensitive
to hand pose changes and explores the implications, in terms of both authentication accuracy and usability, of
this issue. We argue that this type of in-depth exploration of the impact of hand pose variations, analyses that are
currently lacking in the literature, are essential to understand the practicality of wrist-based biometric systems.
Further, prior work suggests that there may be variability in data recorded over several temporally separated
sessions [7, 24] but provides little in the way of data directly addressing this issue. We identify a need for studies
that examine how performance may change over time due to factors such as inevitable variations in the hand
poses users adopt during authentication. Only by assessing and understanding longitudinal performance, and the
factors that can introduce variability over multiple sessions, can we be confident that wrist-based biometrics
are practical, effective and usable. In addition, prior work relies on presenting EER results based on optimal
thresholds for studied data sets. Determining such thresholds, however, is likely highly impractical for a real
world deployment [42]—in such settings, fixed threshold values are more realistic. We identify a lack of literature
contrasting and examining system performance in terms of both optimal ERRs and metrics (e.g., FRRs) based on
practical and readily deployable fixed decision thresholds.
Building on prior audio/vibration approaches, we propose WristAcoustic, a novel biometric authentication

system for smartwatches based on through-wrist sound conduction. In our system, a white noise signal is played
through a surface transducer (or bone conduction speaker) on the dorsal wrist, and acoustic signal responses are
measured by a contact (or bone conduction) microphone on the volar wrist. We measure three separate responses
for simple relax, fist, and open hand poses. Differences in the internal wrist structure between individuals leads to
characteristic response patterns, which we use as features to train three pose-specific authentication classifiers.
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We also use data from these poses together in a set of ensemble blenders. To evaluate the performance of
WristAcoustic we conducted four user studies. Through the first single-session study (N=25) we demonstrate
the effectiveness of combining multiple poses. Our best performing blender uses all three poses to achieve an
average EER of 0.01% on this data set. To measure multi-recall performance, we conducted a 5-recall session
study (with an interim period of at least four hours), demonstrating reduced performance of 5.06% EER with the
same three pose blender. The performance degradation is due to increasing variability in the way people perform
their poses over time. We then conducted a usability study (N=15) to measure users’ experience (e.g., perceived
exertion and workload) in performing multiple hand poses during system enrollment and authentication. Finally,
we conducted a study (N=10) to document performance of the system while users adopt various arm poses and in
the presence of noise (both audio and vibration). We summarize our key contributions and findings:

• Development of an authentication system based on audio transmission through the wrist. To
the best of our knowledge we are the first group to build a through-wrist prototype combining a surface
transducer and contact microphone on opposite (dorsal and volar) sides of the wrist, and also to study the
feasibility of using the signal responses they generate and capture to authenticate smartwatch users.

• Evaluation of multi-pose based authentication performance. Our first study shows that training
separate classifiers for three different hand poses, and using them in an ensemble blender—as opposed to
just using a single pose classifier—substantially improves authentication accuracy: we achieved an average
0.01% EER with this blender, substantially outperforming prior approaches to wrist-based biometrics.

• Characterization of multi-session performance. Results from our multi-session study indicated that
people do not perform hand poses consistently over time. These variations in user behavior present major
challenges to achieving low error rates over prolonged periods. Retraining approaches, in which data from
recall sessions is used to update classifiers, led to improved performance, ultimately achieving a mean EER
of 0.79% with all three poses. Participants struggled more with the relaxed pose—often loosely forming
a fist or modestly splaying their fingers instead. A blender using data from only the fist and open poses,
which represent extreme, and thus distinct, points on the scale of finger flexion/extension showed more
consistent multi-recall performance: 2.76% EER without retraining and 0.51% EER after retraining. Our
final recommendation is to make use of those two poses.

• Usability evaluation. Requiring users to consistently perform multiple hand poses during authentication
may impose new usability challenges. To that end, we propose an optimized system configuration that
achieves relatively rapid multi-pose setup and recall times while maintaining high authentication accuracy.
Our usability study shows that the perceived level of exertion while performing the fist and open poses
during enrollment is moderate (average Borg CR10 scores of 3.1 and 3.3, respectively) and slight during
recall (scores were 2.1 and 2.3). The average system usability scale (SUS) scores for enrollment and recall
were 76.9 and 76.4, ratings associated with “good” usability [1]. In addition, NASA TLX scores indicate
participants experience low levels of workload (relative to, for example, the broad spectrum of tasks
analysed by Grier [11]): 3.76 and 3.42 for enrollment and recall. These results indicate that WristAcoustic is
easy to learn and use. We note that the usability of performing one or more specific hand poses during
watch authentication has not been studied in prior work; we contribute the first data on this topic.

• Robustness to variations in pose and background noise. Real world watch authentication will take
place in a wide variety of contexts and in the presence of various forms of interference, such as background
noise, motion or vibration. To explore the robustness of WristAcoustic to such variations, we conducted
a final study (N=10) combining the optimized enrollment protocol defined and tested in the usability
evaluationwith 22 recall sessions conductedwith users adopting various arm poses and experiencing various
forms of noise (e.g., music, ambient noise) and motion/vibration (e.g., from a smart phone). The results
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demonstrate WristAcoustic performs well in these settings, achieving a mean FRR of 0.5% (corresponding
to a single failure by a single participant) and a mean FAR of 1.67%.

• Threshold evaluations. We present all study results in terms of both optimal thresholds (e.g., EERs) and
an unbiased 0.5 threshold. This analysis reveals that FRRs can be high during the initial recall sessions—due
to more cluttered score distributions forming below the 0.5 level. In order to combine the practical benefits
of fixed thresholds with an acceptable level of initial performance, we recommend adopting relaxed (e.g.,
0.2) thresholds immediately after enrollment, and adjusting this to an unbiased threshold (e.g., 0.5) after
several rounds of retraining. This approach sidesteps the need to collect representative samples, and based
on those samples, infer and validate theoretically optimal per user threshold values. We argue it is therefore
highly practical and suitable for real world system deployments.

2 RELATED WORK

2.1 Explicit Authentication on Smartwatches
Unlocking smartwatches with PINs or graphical patterns can be challenging, as watch screens and graphical
targets are small and input needs to be precise [33]. These usability problems are exacerbated by fundamental
security problems: people tend to choose easy-to-remember and quick-to-enter PINs or patterns that are vulnerable
to dictionary attack. An attacker with perfect knowledge [2] who uses an entropy estimation approach may
successfully crack 8% to 19% of 4-digit PINs within 10 online guesses [28]. Many users also select memorable
dates as PINs [3]—such PINs would be additionally vulnerable to both brute-force attacks and those that leverage
personal data. Pattern exhibit similar trends: crack rates range from 13.33% in a real-world mobile application [5]
to 32.55% in an MTurk study [6]; various well-documented biases [6, 30] also influence pattern selection. Given the
fact that smartwatches increasingly offer security-critical features (e.g., unlocking paired laptops or monitoring
health), we argue it is necessary to develop secure and usable authentication schemes that do not require users to
enter passwords on small watch screens and are not susceptible to guessing attacks.

2.2 Smartwatch Biometric Authentication
Inspired by these motivations, researchers have begun to explore various biometric based authentication schemes
for smartwatches. Cornelius et al. [7] study the feasibility of using on-wrist bioimpedance (tissue responses to
electrical current) to authenticate users, achieving 13.1% EER on eight participants. Zhao et al. [53] explore the
use of wrist photoplethysmography (PPG) signals—PPG monitors blood volume changes from light reflected on
the skin—to authenticate users. In a continuous authentication scenario, their solution achieves approximately
10% FRR and 10% FAR (false acceptance rate). Watanabe et al. [46] explore the feasibility of using ultrasonic
signal reflection on wrists to authenticate users. Their approach requires users to perform four different hand
poses. Based on a nine participant lab study they report a 2.94% EER. However, their work suffers from the
limitation that the same set of imposters (or attackers) was used to both train and test the system, likely resulting
in artificially elevated performance. For a more realistic/meaningful evaluation, these train and test imposter
sets need to be distinct. Finally, Lee et al. [24] use low-frequency vibration motors available on smartwatches to
generate vibrations, and measure vibration responses using accelerometer and gyroscope sensors to authenticate
users. Through a two-session recall study conducted on twenty participants, they reported 1.37% EER on the
first day, and 4.99% FRR after seven days. While this level of performance is promising, doubts remain about the
information used to achieve it: signal frequencies (170–240 Hz) exceed sample recording frequencies (100 Hz).
In addition, we argue that the reduction in performance in their follow up session indicates some uncertainty
regarding the long-term reliability of their scheme. This highlights a need for more substantial multi-session
studies in this area. In this paper, WristAcoustic also demonstrates a similar upward trend in FRRs over multiple
sessions but is able to stabilize this effect by introducing a model retraining process.
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To summarize: we note two inadequacies in existing literature. First, most studies have assumed that people
would authenticate with a single (typically relaxed or undefined) hand pose. However, there may be considerable
variability in how hand poses are enacted over prolonged periods. How such variations will affect overall
performance is currently unknown. Second, prior work primarily focuses on reporting EER results based on one
or two recall sessions. We argue this focus on short-term performance under optimal threshold values likely
overlooks key aspects of performance. For example, it may obscure issues related to deteriorating error rates over
time (e.g., due to changing behaviors), and miss the need to update or retrain classifiers. In this paper, we report
EERs in tandem with results using fixed decision thresholds to elucidate the ways in which EERs can provide
incomplete or misleading information. We believe these issues are of particular importance when considering
practical real-world deployments [42]: realistically, optimal thresholds will not be available, and performance
with respect to fixed thresholds will need to be studied.

2.3 Bioacoustics and Bone Conduction
The hand and arm are effective mediums for transmitting audible bioacoustic signals. Prior work exploring these
signals has focused on using sensors on the hand, wrist or arm to achieve goals as diverse as localizing finger
taps [14, 49], identifying held objects [23], detecting finger gestures [50], and recognizing hand poses [51]. We
know of no prior work exploring acoustic response signals on the wrist for authentication. Acoustic sensing
has been studied extensively in the context of head-mounted wearables too—authenticating voice commands
through speaking-induced body sounds [9, 27], authenticating users on smartglasses through bone conduction
acoustic responses [37], and authenticating users on wireless earphones through in-ear sound reflection [10, 45].
In closely related work, Schneegass et al. [37] explored the feasibility of transmitting white noise acoustic signals
on the skull through a bone conduction speaker, and measuring transferred signal responses to authenticate
users. Their approach, however, uses an air-gapped, in-air microphone to record responses—hence, it is unclear
as to what types of energy transfer paths are being analyzed; the majority of energy transfers may occur through
the glasses frame rather than the skull. They report a 6.9% mean EER with ten participants. In this paper, we build
on this concept and measure the acoustic signal responses of wrists to authenticate smartwatch users. We use a
surface transducer and contact microphone in place of Schneegass et al.’s in-air microphone, focus on recording
through-wrist energy transfer and conduct considerably extended empirical evaluations.

3 DESIGN AND IMPLEMENTATION
In this section, we describe the hardware implementation and optimization efforts. We also explain the overall
data processing pipeline, covering classifier features and training.

3.1 Theory of Operation
The human wrist is made up of many different anatomical parts such as skin, bones, tendons, ligaments, nerves,
and blood vessels. These anatomical parts differ in layout, size, and density from person to person. In 2009, Kumar
et al. [22] noted that despite the promising stability of internal hand and wrist structures in diverse environmental
conditions (such as temperature and humidity), challenges in reliable imaging has meant that relatively little
literature has explored their potential as a biometric. The advent of smartwatches is changing this and a range of
more recent work has documented the strong potential of wrist imaging for biometrics by assessing properties
such as the visual spectral response [19], the impedance [7] and the response to vibration [24]. This work strongly
suggests that the internal and physiological structures of the wrist can provide useful information for biometrics.
We also note that these internal structures, and the external form of the wrist, also vary in response to different
hand articulations (such as making a fist or open palm) with sufficient regularity that monitoring them is reported
to support accurate recognition of hand pose [18]. Furthermore, the wrist and indeed, the human body in general,
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Fig. 1. (a) The power spectrum of 30 response signals recorded under the “sit” and “fist” conditions for five subjects; (b) the
first four principal component scores from 150 power spectrum curves.

is also by-and-large non-compressible and, therefore, an excellent carrier of vibration [23]. Indeed, bio-acoustic
techniques, such as ultrasound [29], are commonly used for high resolution medical imaging of internal body
structures. These three properties combine to suggest that when a sound is emitted from a surface transducer
on the dorsal wrist, and the resultant vibrations transmitted to a contact microphone on the volar wrist, they
will be distinctively transformed by their passage through the particular arrangement of skin [14], bones [41],
soft tissues and fluids [40] they encounter. Figure 1(a) shows the power spectrum of 30 responses to an identical
signal recorded from the wrists of five different individuals, each holding a specific hand pose: a fist. This figure
shows clear differences in the data captured from different individuals and also highly consistent patterns among
the samples recorded from each individual. This combination of high variability between individuals and a low
variability for a given individual (and pose) suggests that the range of anatomical differences in human wrists may
transform audio signals sufficiently uniquely that they can serve as an effective biometric. Figure 1(b) reinforces
this point. It shows the principal component (PC) scores on the first 4 PC directions (which explain more than 95%
of the variation in the power spectrum curves). It clearly indicates that the response signals between different
individuals are readily separable.

3.2 Hardware Design and Implementation
We constructed two sensor enhanced wrist-bands for the work reported in this paper. We note that watch
wristbands have been frequently proposed as a site for embedded electronics that seek to enhance smartwatch
functionality, such as extending the touch input space [36], providing an larger display [20] or supporting
various forms and modalities of hand gesture recognition [52]. Both our wristbands were built around simple 22
millimeter fabric wristwatch straps and involved separate modules, each of which could be slid along the strap
in order to accommodate different wrist sizes, for the vibration transducer and contact microphone. Hardware
components in both versions of the wristband modules were identical. For sensing, we used a Knowles BU-21771
contact microphone, previously deployed in a range of closely related prior work studying through body audio
transmission [12, 35] together with a modified version of the amplifier design proposed for this device by Zhang
et al. [50]. Modifications including removal of post-amplification filters (as these showed few improvements to
signal quality in pilot tests) and tests with a variety of different gains: during piloting, we ultimately selected a
gain of two. For actuation, we used a commercially available surface transducer1 also deployed in prior work on
active in-body audio transmission [51]. We drove the speaker using a breakout for the TPA2012 class D audio

1https://www.adafruit.com/product/1674
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Fig. 2. Hardware prototypes used in first (top) and second (bottom) studies. Units on the left of the watch straps are the
surface transducers and units on the right are the contact microphones. Image panels on the right show worn prototypes.

amplifier2 configured for 24 dB gain. Both amplifiers were located immediately adjacent to the microphone and
transducer (i.e., mounted on the wrist) in order to minimize the impact of RF noise.

All modules themselves were 3D printed in skin-safe Thermoplastic polyurethane (TPU), specifically NinjaTek
SemiFlex3. We note TPU is often indicated for use as a vibration damper. The primary differences between the
two prototypes were in the design of these enclosures: in the first study, the modules exposed transducer and
microphone surfaces directly to the skin and used jumper cables for connections. In addition, the 350mAh 3.7V
li-ion battery used to power the transducer was located off the wrist. We note this battery is typical for the
current generation of smartwatches. For example, the Apple Watch 74 and Samsung Galaxy Watch 45 product
families feature 3.8V li-ion batteries rated at, respectively, up to 309mAh and 350mAh. In the second study, a thin
film of TPU (0.35 millimeters) covered actuator/sensor surfaces, we used 3.5 millimeter audio jack connectors
and shielded cables and also integrated the 3.7 li-ion battery into the wrist unit. These changes were made to
increase the reliability of the prototype (to better support repeated study sessions over a protracted period) and
to more closely follow commercial products in this space—systems in which actuators and sensors are invariably
enclosed in plastic to enhance robustness and reliability. Both prototypes are shown in Figure 2.
To ensure close synchronization between signal generation and recording we opted to use an embedded

audio system based around the Teensy 4.16 platform, and its audio expansion board and library7. Using this
system, we developed software to play 2 seconds and record 2.025 seconds of single channel 44.1 kHz 16 bit
audio simultaneously. Recording commenced immediately (between 7-8 milliseconds) before playback to ensure
all transmitted signals were captured. All samples (for both playback and recording) were buffered in RAM to
minimize the impact of latency during data loading or saving. As RAM on such embedded systems is highly
limited, the system flushed recorded data to an SD card in-between each recording. Additionally, the system was
capable of loading arbitrary new samples for playback. The system was connected to a host PC to coordinate,
and execute experimental procedures via either Bluetooth or a wired RS232 connection. This system enabled
accurate synchronization of playback and recording activities, sufficient to support our empirical objectives.

3.3 System Overview
Use of WristAcoustic involves three distinct phases of activity: enrollment, authentication, and retraining.

2https://www.adafruit.com/product/1552
3https://ninjatek.com/
4https://en.wikipedia.org/wiki/Apple_Watch
5https://en.wikipedia.org/wiki/Samsung_Galaxy_Watch_4
6https://www.pjrc.com/store/teensy41.html
7https://www.pjrc.com/store/teensy3_audio.html
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3.3.1 Enrollment. During enrollment, the system collects reference response signals, pre-processes them, extracts
classification features, and trains user-specific binary classifiers. During this stage, users are required to put on
their watches several times and perform one or more poses (relax, open, or fist). While performing each pose,
a cue signal (e.g., white noise) is played through a surface transducer resting on the dorsal wrist. Transferred
response signals are recorded through a contact microphone situated on the volar wrist, and processed into
one or more of the signal processing features presented in Section 3.4. Multiple samples per pose are collected
each time the watch is worn (subsequently referred to as a donning). In Section 5.10 we introduce and justify
recommendations for the number of times (four) the device should be donned and the number of samples to
be collected each time (five) it is put on. When data collection is complete, user-specific binary classifiers are
trained for each pose (and their blended combinations) using the features extracted from reference signals and a
pre-deployed imposter train set, which comprises 100 samples collected from a separate group of 10 individuals
during the system development stage. This is a prerequisite for training binary classifiers on smartwatches: a
small-scale data collection effort would be needed to acquire approximately 100 samples per pose, process them
into features, and deploy them on the watches before shipping. Since only 20 genuine user samples and 100
imposter train samples are used for training a lightweight (pose-specific) classifier, all model training can be
performed quickly on smartwatches within a few seconds (see Section 5.11).

3.3.2 Authentication. WristAcoustic is a smartwatch unlock scheme—implying that, during authentication,
users don their watch, and perform the required (one or more) poses synchronized with audio cues (e.g., “beep”
sounds played in ascending frequencies) to unlock their watch. Authentication response signals are collected and
processed into features. This data is then submitted separately to the appropriate classifiers in order to generate
probability scores. The probability scores are then compared against a pre-defined threshold value. Users are
successfully authenticated if the probability scores are higher than the threshold value.

3.3.3 Retraining. Finally, the implicit retraining phase involves accumulating the response signal samples from
successful authentication attempts, and using those new samples to periodically retrain authentication classifiers—
this ensures that the classifiers adapt to users’ changing donning and posing behaviors, and physiological and
biological characteristics. Samples from successful WristAcoustic authentication sessions are selected, and added
to the training set. Samples from failed sessions are also added if users eventually manage to unlock their watch
throughWristAcoustic or by using another authentication method (e.g., PIN or pattern). New samples are collected
automatically, and users are never asked to perform additional sessions solely for the purposes of extending data
collection. To maintain a balanced train set, our sampling algorithm ensures that those new samples (representing
users’ latest posing behaviors) make up approximately half of the training set; the remainder is always selected
from the original enrollment set. Considering battery constraints, we envisage that retraining could be performed
once a day—ideally at night while users are asleep and their watches are being recharged.

3.4 Pre-processing and Feature Selection
Our hardware prototype records the responses to each two-second stimulus cue signal bracketed by a short
(25 millisecond) buffer to accommodate any system latencies and ensure the capture of full audio signals. To
precisely determine the start and end of recorded samples we computed the ratio of signal variances between an
empty signal (where cue stimuli are absent) and the time frames of a given response signal, and checked this ratio
against a threshold value. We also applied a bandpass filter between 300 Hz and 19 kHz to reflect the frequency
response range of our surface transducer. The details of these pre-processing steps are explained in Appendix
A. Using those pre-processed samples, we compute each of the following features over the full two seconds of
recorded audio.
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3.4.1 Power Spectral Density (PSD). PSD is a frequency domain feature that describes how the power of a
signal is distributed over a given frequency range. There are multiple methods to estimate PSD. As we expect
the response to a stationary white noise stimulus to also be stationary, we estimated PSD by calculating the
periodogram of the whole signal using FFT, and smoothing the periodogram with modified Daniell smoothers [4].
For smoothing and frequency sampling, we used 50 Hz windows without overlapping in the range from 300
Hz to 19 kHz: 375 windows in total. The resulting 375 item log-PSD vector was used as a feature. Note that
one can use a time-averaged periodogram for PSD calculation (e.g., Welch’s method [47]). The time-averaging
approach involves dividing the signal into overlapping segments, computing a periodogram for each segment, and
averaging the periodograms. For stationary signals, the time-averaging approach results in a coarser frequency
resolution; calculating a smoothed periodogram, the method used here, is therefore preferred.

3.4.2 Transfer function. A transfer function is a frequency domain feature that measures how a cue stimulus
signal 𝑠 is converted to a response signal 𝑥 by passage, in this case, through the wrist. At each frequency 𝑓 , it
is computed as 𝐻 (𝑓 ) = 𝑃𝑥𝑠 (𝑓 )/𝑃𝑠𝑠 (𝑓 ), where 𝑃𝑥𝑠 is the cross-PSD between 𝑥 and 𝑠 and 𝑃𝑠𝑠 is the PSD of 𝑠 . We
used the same frequency range and windowing parameters as for PSD (leading to 375 windows) and used log
magnitude of this transfer as a feature.

3.4.3 Mel-frequency Cepstral Coefficients (MFCCs). MFCCs are time-frequency domain features widely used
in speech recognition systems. They have also been used in prior authentication systems [37]. We computed
39 cepstral coefficients based on a Hamming sliding window. We used a window length of 25 milliseconds and
overlap length of 10 milliseconds. We computed means across the time-series data, and used those 39 mean values
as features.

In addition to the feature sets described above, we also experimented with simple concatenation of two feature
sets (e.g., concatenating PSD and MFCC features to create an one-dimensional vector consisting of 414 features).

3.5 Classification Algorithms
We build our authentication classifiers using a binary support vector machine (SVM) with radial basis function
kernel. We chose a binary SVM classifier as it showed peak performance among the following classification
algorithms: SVM, Random Forest (RF), XGBoost, and Neural Network for binary classification, and one-class
SVM and kNN. Throughout these tests, we used the python hyperopt package to optimize hyperparameters for
the classification algorithms.

4 STUDY 1: SINGLE-SESSION STUDY FOR PARAMETER OPTIMIZATION
We conducted a single-session study to characterize basic system performance, and explore the impact of different
hand poses (relax, fist and open), and common body postures (sitting and standing). This section presents the
study methods and authentication accuracy results. We note that rather than test a realistic authentication
system, the goal of this study was to identify the best performing combinations of poses, postures, features, and
classifiers. As such, the study collected extensive data: multiple cue repetitions from multiple sessions spanning a
prolonged study session of approximately one hour. The study protocols were approved by the university’s IRB.
We explicitly informed the participants that the purpose of the data collection was to develop and evaluate a
smartwatch authentication solution based on through-wrist acoustic response information.

4.1 Methods
This study involved participants wearing our wristband prototype while we played audio cues and recorded the
responses. Based on closely related prior work [37], we selected a white noise signal with 44.1 kHz sampling rate
(frequency range between 0 to 22.05 kHz) as the audio cue. In addition to transmitting sound through the wrist,
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this cue produced an audible noise that resembled that of the vibration feedback on a smartphone. We chose a cue
duration of two seconds to keep authentication times close to those reported for explicit PIN based smartwatch
authentication [31, 33]. Participants were asked to put on our wristband prototype (see Section 3.2) on their left
wrist five times in total. Each time they wore it, they performed three hand poses—relax, fist and open—in two
body postures—sitting and standing. For each combination of these variables, we played and recorded responses
to 30 samples. As such, we logged 900 samples (3 gestures × 2 body poses × 5 donnings × 30 samples) from each
participant. To reduce wear and tear on the prototype and ensure similarity (e.g., band tightness, approximate
watchband location) between donnings, study moderators supported participants in putting on and removing
the wristband. In the sitting context, the participants were asked to rest their elbows comfortably on the study
table with their hand held in free space above the table. In the standing context, the participants were asked to
have their arms resting downward, adjacent to their thighs, in a relaxed pose. After the data collection phase, the
participants were asked to complete a short demographics questionnaire. The study took approximately one
hour to complete, and the participants were compensated with the equivalent of 13 USD in local currency.

4.2 Demographics
Out of the 25 participants, 14 were female (see Table 6 in Appendix B). The average age was 23.3 years (SD=5.5),
and 88% were right-handed. We measured wrist sizes as these could impact authentication performance. The
average wrist circumference for female and male participants was 15.2 centimeters (SD=1.2) and 16.2 centimeters
(SD=0.8), respectively. Unsurprisingly, we observed a statistically significant difference in the wrist sizes between
female and male participants (two-sample t-test 𝑝 = 0.024). We also recorded height and weight: the average
height and weight for female participants were 161.5 centimeters (SD=4.2) and 59.3 kilograms (SD=8.0). For the
male participants, these data were 174.4 centimeters (SD=4.4) and 67.0 kilograms (SD=7.2). We observed a strong
correlation between the wrist size and weight (Pearson’s correlation coefficient 0.85, 𝑝 < 0.0001), and a moderate
one between wrist size and height (Pearson’s correlation coefficient 0.56, 𝑝 = 0.003).

4.3 Evaluation Setup
We evaluated how the authentication performance differs between the three hand poses and sitting/standing
body postures, and the effectiveness of combining multiple hand poses as ensemble blenders. To explore these
variations, we used a binary SVM classifier and the features described in detail in Section 3.4. For each classifier
we trained, we divided the 25 participants into two groups: 10 participants were used for imposter training and
the remaining 15 participants were set as genuine users. For each genuine user, the imposter set was used to train
a binary classifier and the other 14 genuine users served for unknown user (imposter) testing. In addition, due to
the fact that a single evaluation of an authentication system with a specific set of genuine users and imposters
does not represent authentication performance in general, we repeated the classifier training process with a
random selection of 10 imposters and 15 genuine users 100 times. We report all results as means over all hundred
permutations. To examine the effects of hand poses on authentication, we evaluated two authentication models:
(i) per-pose authentication, and (ii) multi-pose authentication.

In per-pose authentication, a single hand pose is required for authentication. So, for each pose, we used the
first 𝑘 donning sessions of each genuine user in both sit and stand positions for training. In our evaluation, we set
𝑘 = 3 and 4, which resulted in 180 and 240 samples for genuine user training. The last donning session for each
pose was always used for genuine user testing (corresponding to 60 samples). To create a balanced training set, we
used 300 samples for imposter training: 30 samples from each of the ten imposters. As attackers can try any hand
pose under any body posture to compromise the target device, the samples for each imposter were composed of
5 randomly selected samples for each combination of the three hand and two body poses. For unknown user
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(imposter) testing, we used 60 samples (3 hand poses × 2 body poses × 5 donnings × 2 samples) from each of the
other 14 subjects in the genuine user set: 840 samples in total.
In multi-pose authentication, we assumed users were requested to perform a given set of hand poses. We

examined all possible combinations—three hand pose pairs and one triple. We used ensemble models of multiple
per-pose classifiers each with equal weight for authentication. We used the same training sets as in the per-pose
authentication for training the ensemble model, while 60 pairs or tuples of samples of the appropriate hand poses
were used for genuine user testing. For unknown user (imposter) testing, we chose 4 pairs or tuples of samples
under each of all possible hand pose sequences (i.e., nine combinations of two hand poses and 27 combinations of
three hand poses) and ensured that both sit and stand positions were included, as attackers can try any sequence
of hand poses for authentication. This resulted in 504 pairs of samples covering any two hand poses, and 1,512
tuples of samples for all three hand poses.

We use both (1) equal error rate (EER), and (2) half total error rate (HTER) as evaluation metrics. EER is defined
as the rate at which false acceptance rate (FAR) and false rejection rate (FRR) are equal. We use individual user
thresholds to compute EERs. FRR measures error rates for incorrectly classifying users’ samples as attackers’
samples (affects usability); FAR measures attack success rates (affects security). EER values are readily obtained
from the ROC curves, but are dependent on test data—indicating that for a given user, inferring a threshold value
would depend on a combination of both the user’s own data and data from other users. For this reason, a fixed
threshold (e.g., probability = 0.5) can also be used across users. In that case, HTER, defined as the average of FAR
and FRR, can be used as the preferred performance measure.

4.4 Results
To simplify data presentation, we select the top performing feature combination, which was the MFCC and
PSD concatenation feature, and summarize the key accuracy results in Table 1. The full results containing all
individual feature sets can be found in Appendix C (see Tables 7 and 8). These results show the mean and standard
deviation (over 100 random permutations) of the average genuine user EER and HTER for each of the three hand
poses. The results indicate that hand pose affects authentication performance. Specifically, the fist pose showed
stronger performance compared to the other two poses. Overall, all three individual feature sets demonstrated
strong performance: e.g., achieving between 0.7–2.41% average EER, and 3.23–3.39% average HTER on the fist
pose with 𝑘 = 4. As for concatenated features, MFCC and PSD concatenation showed superiority across all three
hand poses compared to all other feature sets. It led to average EERs for fist, open, and relax poses of 0.72%,
1.59%, and 1.75%, respectively, when 𝑘 = 4. We found that combining multiple hand poses significantly reduces
both EER and HTER, demonstrating that each hand pose offers unique information that enables these ensemble
approaches to be effective. Combining all three gestures performed the best, showing an average EER of 0.01%
and an HTER of 0.39% with both PSD and MFCC features when 𝑘 = 4. Among the two-pose ensemble blenders,
the combination of fist and open demonstrated the lowest error rates of 0.11% EER and 0.67% HTER, when 𝑘 = 4.

4.5 Context Analysis
In our user study, we collected each participant’s bio-acoustics responses from five donning sessions, each
featuring three different hand poses and two different body postures. These different contexts can affect the
response signal. For example, extension and flexion of the fingers during the open and fist gestures involves the
tendons, ligaments and muscles in the wrist, causing numerous internal changes. Blood pressure in the sitting
pose (with the hand roughly level with the heart) would be expected to be higher than in the standing pose (with
the wrist well below the heart). Subjectively, this change of pose corresponds to a sense of tightening of the
band during standing. To better understand how authentication accuracy might vary when users adopt different
hand or body poses, we opted to examine results from a single balanced set of imposters and genuine users: we
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Table 1. Authentication accuracy for per-pose classifiers and multi-pose ensemble blenders. Mean FAR, FRR and EER
measured over 100 permutations (randomly selecting 15 genuine users and 10 imposters each time). 𝑘 indicates the number
of donnings used for training.

EER (%) Probability threshold = 0.5
𝑘 = 3 𝑘 = 4

Feature Hand pose 𝑘 = 3 𝑘 = 4 FAR (%) FRR (%) HTER (%) FAR (%) FRR (%) HTER (%)
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

MFCCs + PSD

Fist 1.48 (0.64) 0.72 (0.43) 1.99 (1.05) 8.02 (3.02) 5.01 (1.48) 2.22 (1.07) 3.99 (2.44) 3.10 (1.27)
Open 2.23 (0.82) 1.59 (0.65) 2.76 (1.28) 8.84 (3.68) 5.80 (1.70) 3.09 (1.39) 4.52 (2.26) 3.81 (1.18)
Relax 2.01 (1.06) 1.75 (1.02) 2.51 (1.43) 7.88 (3.68) 5.19 (1.92) 3.06 (1.66) 3.69 (2.57) 3.38 (1.56)
Fist/Open 0.44 (0.35) 0.11 (0.13) 0.62 (0.52) 3.54 (2.16) 2.08 (1.12) 0.79 (0.59) 0.54 (0.63) 0.67 (0.45)
Fist/Relax 0.28 (0.19) 0.19 (0.16) 0.48 (0.41) 5.08 (2.61) 2.78 (1.29) 0.74 (0.54) 1.09 (1.42) 0.92 (0.72)
Open/Relax 0.54 (0.40) 0.34 (0.28) 0.39 (0.30) 6.78 (2.06) 3.58 (1.03) 0.63 (0.40) 4.16 (1.61) 2.39 (0.80)
Fist/Open/Relax 0.17 (0.14) 0.01 (0.02) 0.24 (0.25) 3.41 (2.47) 1.82 (1.24) 0.39 (0.34) 0.39 (0.52) 0.39 (0.31)

manually selected this set from the one hundred previously evaluated permutations. For the ten imposters, six
were female and the mean age, wrist size, weight, and height were, respectively, 23.6 years, 15.39 centimeters, 63
kilograms, and 167.76 centimeters. For the 15 genuine users, eight were female and these figures were 23.1 years,
15.75 centimeters, 62.5 kilograms, and 166.8 centimeters, a close match to the imposters. HTERs with this set for
per-pose classifiers (trained with PSD) and 𝑘 = 4 were 1.33%, 5.59%, and 2.66%, respectively, for fist, open, and
relax.
Table 2 shows how authentication accuracy changes when we test with hand poses that are different to the

trained poses. Average FRRs (measured across all 15 genuine users) increase steeply when a genuine user seeks
to authenticate with the wrong hand pose—using the open pose to authenticate with a fist-trained classifier,
for example, led to a 36 fold increase in average FRRs. We also tried training a single classifier with all three
hand poses (randomly selecting 10 samples per pose from each of the 𝑘 donning sessions): these classifiers (the
“all” condition) demonstrated modestly worse HTERs for the individual poses of fist (3.74%) and relax (3.74%),
suggesting that (1) hand gestures are critical for stable on-wrist authentication using our technique, and (2)
training separate per-pose classifiers is more effective than training a single classifier that accommodates all
three poses.

Using a similar process, and the same set of users, we also evaluated how sitting and standing postures affect
authentication accuracy for the top performing fist hand pose. Table 3 shows the resulting cross-body posture
authentication accuracy. If the fist-specific classifier was trained under either sit or stand body posture and then
tested on the other posture, FRRs increased by 3–9 times. On the other hand, when samples from both sit and
stand postures were used for training (we randomly selected 15 samples per posture from each of the 𝑘 donning
sessions), peak authentication accuracy was achieved. This suggests that training a diversity of body postures in
enrollment phase can be effective, albeit at the cost of requiring more complex procedures.

4.6 Physical Characteristics
To analyze how authentication accuracy changes by physical characteristics of a genuine user, we picked the
fist-based classifier trained with PSD features and 𝑘 = 4. In each of the 100 permutation (genuine/imposter)
user sets, we evaluated whether there is a statistically significant difference in authentication accuracy by each
physical characteristic (see Figure 9 in Appendix D). Note that a two-sample t-test was used for gender, and
correlation test with Pearson’s correlation coefficient was used for age, wrist size, weight, and height. In these
100 sets, only wrist size (once) and weight (three times) led to statistically significant variations in authentication
performance. We conclude that physical characteristics had little impact on authentication accuracy.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 167. Publication date: December 2022.



WristAcoustic: Through-Wrist Acoustic Response Based Authentication for Smartwatches • 167:13

Table 2. Cross-pose authentication accuracy. Results in %

Training Testing 𝑘 = 3 𝑘 = 4
pose pose FAR FRR HTER FAR FRR HTER

Fist
Fist 0.97 8.39 4.68 1.21 1.44 1.33
Open 0.97 51.56 26.26 1.21 52.78 26.99
Relax 0.97 28.39 14.68 1.21 19.11 10.16

Open
Fist 1.21 53.00 27.10 1.84 40.89 21.37
Open 1.21 19.33 10.27 1.84 9.33 5.59
Relax 1.21 58.28 29.74 1.84 51.33 26.59

Relax
Fist 1.44 30.33 15.89 1.87 21.56 11.72
Open 1.44 59.50 30.47 1.87 53.44 27.66
Relax 1.44 9.11 5.28 1.87 3.44 2.66

All
Fist 3.41 6.67 5.04 4.14 3.33 3.74
Open 3.41 10.39 6.90 4.14 7.00 5.57
Relax 3.41 5.00 4.21 4.14 3.33 3.74

Table 3. Cross body posture authentication accuracy. Hand
pose is fixed to the fist pose. Results in %.

Training Testing 𝑘 = 3 𝑘 = 4
posture posture FAR FRR HTER FAR FRR HTER

Sit Sit 0.24 12.78 6.51 0.41 15.33 7.87
Stand 0.24 62.78 31.51 0.41 59.56 29.99

Stand Sit 0.44 41.11 20.78 0.71 46.22 23.47
Stand 0.44 15.56 8.00 0.71 4.44 2.58

All Sit 0.98 0.56 0.77 1.27 1.56 1.41
Stand 0.98 15.78 8.38 1.27 1.33 1.30

Table 4. FARs of individual users from clustering attacks where unknown attackers are the
other users in the same cluster of physical characteristics.

Cluster Participant Physical condition FAR (%)
Gender Height (cm) Weight (kg) F O R F/O F/R O/R F/O/R

C1 Subject1 female 164 50–55 33.33 5.00 1.67 5.56 0 0 0
Subject16 female 162 45–50 0 0 0 0 0 0 0

C2

Subject3 female 155 50–55 0.83 0.83 0.83 0 0 0 0
Subject5 female 157 50–55 5.00 35.42 5.00 8.33 2.78 6.94 3.24
Subject9 female 159 55–60 0 0 7.08 0 0 0 0
Subject17 female 157 55–60 8.33 4.58 8.75 0 0 0 0
Subject21 female 158 50–55 0 0 2.08 0 0 0 0

C3

Subject6 female 165 60–65 0 2.22 5.56 0 0 5.56 1.85
Subject13 female 163 60–65 3.33 4.44 0 0 0 0 0
Subject18 female 163 60–65 0 0 0 0 0 0 0
Subject22 female 163 55–60 0 7.22 0 0 0 0 0

C4 Subject15 female 171 65–70 3.33 0 0 0 0 0 0
Subject23 female 165 65–70 0 0 0 0 0 0 0

C6 Subject4 male 170 50–55 0 0 0 0 0 0 0
Subject14 male 170 55–60 0 0 0 0 0 0 0

C7

Subject7 male 170 65–70 1.67 0 0.56 0 0 0 0
Subject10 male 173 65–70 0 1.11 3.33 0 0 0 0
Subject12 male 174 65–70 0.56 0 6.67 0 0 0 0
Subject19 male 175 65–70 0 0 0 0 0 0 0

C8
Subject20 male 181 75–80 1.67 1.67 0 0 0 0 0
Subject24 male 180 70–75 0 0 0 0 0 0 0
Subject25 male 180 70–75 0 0 0 0 0 0 0

Average 2.64 2.84 1.89 0.63 0.13 0.57 0.23

4.7 Robustness against Imitation Attacks
Biometric authentication systems, such as based on face or voice recognition, are often targeted with imitation or
replay attacks that involve presenting media (e.g., photographs, audio recordings) to spoof the system. While
such methods could be applied to WristAcosutic, there are major challenges: it would be inherently difficult to
both acquire and accurately inject the response of a user’s wrist to an acoustic signal. A more practical approach
may be to recruit attackers who are physically and physiologically similar (e.g., in terms of height, weight, wrist
size) to a target victim and simply ask them to don the watch and attempt to authenticate as normal.
To explore the robustness of WristAcoustic to such efforts, we conducted two analyses. We first explored

the impact of gender, height and weight: we split participants into gender sub-groups, then applied k-means
clustering to the weight and height characteristics of each sub-group (with 𝑘 = 5) to identify seven clusters
(encompassing 22 participants) composed of two or more participants with identical genders and similar builds.
For each cluster participant, we then trained a binary classifier using an imposter train set of ten randomly
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Fig. 3. Mean FARs from imitation attacks where unknown attackers are those whose wrist circumferences are within 3, 5, 7,
or 9 mm of each genuine user.

selected participants from outwith their clusters and calculated FARs, representing attack success rate, using all
participants from within their cluster. The results are shown in Table 4 and indicate that single pose systems can
be vulnerable to this attack—although generally low, FARs peak at 35.42%. Two and three pose blenders showed
improved performance with peak FARs of 8.33% and the vast majority of participants recording 0% FRRs. This
result emphasizes the importance of combining multiple poses.
Our second analysis examined wrist size. For each participant we created four different groups of attackers

based on wrist circumference similarity. These featured attackers with wrist circumferences less than 3mm,
5mm, 7mm and 9mm different from the participant. These groups featured a mean of, respectively, 3.4, 5.8, 7.8,
and 9.3 individuals. For each participant, imposter sets (N=10) were again drawn randomly from the remaining,
non-attacker, participants. We then trained classifiers and calculated FARs for each participant. Figure 3 shows the
mean FARs achieved. These data again highlight the importance of using multiple poses: FARs with single pose
configurations are three to four times greater. In addition, performance is modestly worse (approximately 1% FAR)
in multi-pose systems when attackers have similar wrist sizes (less than 3mm different): the average FARs for
the two-pose fist/open blender and the three-pose blender were 1.04% (SD=3.3) and 0.99% (SD=2.1), respectively.
This indicates that, even if adversaries are able to accurately determine victim wrist circumference and recruit
attackers based on this physical characteristic, the performance of multi-pose systems remains reasonably robust.

4.8 Authentication Model Generalizability Validation
To further validate the performance of WristAcoustic, we employed a widely used user identification scheme [8,
16, 17, 37]. The technique involves first assessing multi-class accuracy on a known set of users, then measuring
authentication performance (FRR/FAR) with one-class classifiers using a “leave-one-subject-out” cross validation
procedure. We trained the multi-class classifiers using samples from the first four donning sessions and used
samples from the final donning session to assess accuracy. The multi-class user identification results, shown in
Table 5, show single pose classifiers achieve accuracies of 95.47% or higher and that performance with multi-pose
classifiers (configured as an ensemble blender) is near perfect. We then measured authentication error over 25
cross-validation rounds. In each round a single participant is left out as an unknown attacker: all data from this
participant serves as the imposter test set (used to determine FARs). We then use the remaining 24 participants to
train a multi-class classifier and, additionally, a one-class classifier unique to each participant. In this process, we
again use the first four donning sessions for training and the final donning session as the genuine user test set
(for determining FRRs). We then calculate performance by first submitting each test sample to the multi-class
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Table 5. User identification and authentication accuracy.

Feature Hand pose
User Identification User Authentication

Accuracy (%) FAR (%) FRR (%) HTER (%)
Mean (SD) Mean (SD) Mean (SD)

MFCCs + PSD

Fist 95.47 4.07 (5.80) 4.06 (0.65) 4.06 (2.82)
Open 95.73 8.70 (12.45) 8.45 (0.74) 8.57 (6.27)
Relax 97.93 5.32 (6.70) 4.65 (0.53) 4.98 (3.28)
Fist/Open 100.00 1.89 (6.04) 1.20 (0.17) 1.54 (3.03)
Fist/Relax 100.00 1.33 (4.61) 1.27 (0.26) 1.30 (2.32)
Open/Relax 99.27 3.22 (7.68) 3.47 (0.50) 3.34 (3.79)
Fist/Open/Relax 100.00 0.59 (2.07) 0.40 (0.08) 0.50 (1.04)

classifier; the result of this process determines which one class classifier should be selected. The sample is then
submitted to the selected one-class classifier. If the resulting score exceeds a given threshold—for this analysis,
we computed an optimal one-class classification threshold value based on all 25 users—the sample is considered
genuine. Table 5 shows the user authentication results, in terms of mean FARs, FRRs and HTERs, over all 25
cross-validation rounds. For single pose systems, these figures are somewhat elevated compared to the results
reported from the binary classifiers described in Table 1: 4.06% to 8.57% here compared to 3.1%–3.81% with binary
classifiers. However, WristAcoustic continues to achieve low error rates with the best-performing three pose
blender (0.40% FRR and 0.59% FAR here), once again demonstrating the importance of using multiple poses.
In addition, these results indicate that our feature sets are robust and perform generally well regardless of the
classification and validation methods applied.

5 STUDY 2: MULTI-RECALL SESSION PERFORMANCE
To build on the results from our first study, we conducted a multi-session study to explore performance over
time. We expected to record increased diversity in recorded data due to small variations that may accumulate
over longer periods. In addition to characterizing the impact of changes, we also sought to establish the need
for and extent to which retraining can accommodate the resultant signal variations and maintain high levels of
authentication performance. The study protocols were reviewed and approved by the university’s IRB.

5.1 User Study Methods
We recruited two groups of ten new participants: imposters and genuine users. For both groups, we collected
data during an enrollment session that closely followed procedures in the single session study. Each participant
completed five donning sessions and trials with each of the three hand poses (relaxed, fist, and open), as these
showed a strong impact on authentication performance. However, we opted to study only a single body posture
(seated), as this variable led to more minor variations (although training with both postures did lead to reliable
overall performance), and dropping it enabled a substantial reduction in data collection time. In addition, the use
of a single pose allowed us to stably record videos of all trials. To achieve this we set up a camera to capture
video of the participant’s arm in profile, providing a clear side view of the watch, forearm and hand gestures
being performed. In this study, we again used the two-second white noise cue, captured 30 cue repetitions in
each donning, and had a moderator help the participants during donnings to ensure the device was always
buckled with the same tightness, and in approximately the same location on the wrist. Imposters completed
their participation in the study after this initial session. Genuine users continued the study by attending a series
of five separate recall sessions. We selected a session schedule based on data gathered from the first study. Of
the participants who wore a watch regularly (62%), half indicated that they took it off mid-day at least once
for exercise, personal hygiene, charging, or to sleep. Based on this pattern of activity we targeted semi-regular
watch donning through the course of several days in our study design. Specifically, recall sessions were each
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separated by a minimum of four hours, and a maximum of 72 hours (e.g., if study sessions fell over a weekend).
Each recall session involved a single donning session including 30 cue repetitions for each hand pose. In total, we
collected 900 samples for each genuine user and 450 for each imposter. Genuine users were compensated with
the equivalent of 26 USD in local currency and imposters with 13 USD.

5.2 Demographics
Appendix B includes the demographics of our multi-recall session study participants. During recruitment, our
primary goal was to assemble genuine user and imposter sets that were well matched rather than broadly
representative of the wider population. This is because our first study robustly demonstrated our technique
is effective for a relatively diverse group of participants. Furthermore, demographic variations between the
relatively small genuine user and imposter groups in this study would weaken confidence in our results, as such
differences might artificially inflate performance. Accordingly, to simplify the matching process, we opted to
recruit only male participants. The average age of participants in the genuine user set was 25.9 years (SD=3.0), and
nine were right-handed. Their average height, weight, and wrist circumference were 172.9 centimeters (SD=3.2),
70.5 kilograms (SD=6.3), and 15.7 centimeters (SD=0.9), respectively. The average age of the imposters was 25.6
(SD=2.0) and their average height, weight, and wrist circumference were 173.6 centimeters (SD=4.8), 74 kilograms
(SD=7.5), and 16.2 centimeters (SD=0.9), respectively. There were no statistically significant differences in the
heights, weights, and wrist sizes of the genuine and imposter user sets (two-sample t-test 𝑝 = 0.705, 0.273, and
0.262, respectively).

5.3 Evaluation Setup
To evaluate multi-recall session performance, we trained three binary classifiers using the PSD and MFCC
concatenated features that performed best in the first study for each genuine user: one for each hand pose. For
each, we used all genuine user samples in the first four enrollment donnings (120 samples in total) and an imposter
train set composed of 10 samples from each imposter (100 in total). All imposter samples were randomly selected
from all poses in the first donning session and fixed for each user. One participant in the genuine user set showed
low compliance with study instructions, executing hand poses forcefully despite instructions to the contrary.
Accordingly, we excluded this participant’s data in the accuracy evaluations.

For each genuine user, we measure per session recall FRRs using all samples from the final enrollment donning
and all five recall sessions. We include data from the final enrollment donning to compare performance in this
study with that attained in the first study. To measure FARs, we created a fixed imposter test set for each genuine
user. This was composed of 30 samples from each other genuine user, randomly selecting these from all sessions
and poses (240 samples in total). In this analysis, we create classifiers for each individual pose, and ensemble
blenders for all possible pose combinations (three pairs and one triple).
We extend these results to evaluate model retraining effects by including data from recall sessions in the

genuine user train set: we used between 1 and 3 recall sessions for retraining. To create retraining sets, we
extended the initial 120 sample train sets with all 30 samples from the retraining recall sessions. For example,
when using three recall sessions for retraining, we add 90 retraining samples to the original train set. During this
process, each genuine user’s imposter train sets and imposter test sets (for calculating FARs) are unchanged. We
calculate FRR with the remaining recall sessions.

5.4 Single-session Results
To compare and validate our results in this study against those achieved in the first study, we measured the
single-visit FRRs based on the fifth donning (enrollment) samples. FARs were measured with the imposter test set
described above. The first row in Table 9 in Appendix E shows these results. All single-pose classifiers performed
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Fig. 4. Multi-session average FRR, FAR (threshold 0.5), and EER with respect to varying number of recall sessions included in
the retrain set (“number of retraining sessions”). “0” indicates that classifiers trained only on enrollment data were used.
Concatenated PSD and MFCC features were used for all evaluations.

as expected, achieving between 0.28–1.85% average HTER when both MFCC and PSD were used as a concatenated
feature set. An ensemble blender that uses all three poses achieved peak performance with a mean HTER of 0%.
These observations are consistent with the HTER results presented in Table 1.

5.5 Multi-session Results
We present multi-recall session results with respect to average FRRs, FARs, and EERs in Figure 4. Full details are
in Table 9 in Appendix E. For all three poses and ensemble blenders, average FARs remain low while FRRs are
markedly elevated (ranging between 29.56–52.52% across different hand poses and blenders). The resultant EERs
2.76%–10.23% are broadly in line with those in related work reporting on performance with a vibration-based
wrist biometric and a 7th-day recall session [24]. We surmise these variations may be due to participants failure
to perform the three hand poses consistently over time—more variability in hand poses may creep in after some
hours or days. We explore the veracity of this somewhat surprising observation in more detail in Section 5.8.

5.6 Retraining Results
Figure 4 shows performance after retraining. Full details are again in Table 9 in Appendix E. The headline
observation is that there is a steep downward trend in FRRs as the number of recall sessions contributing data to
the retraining set increases. For example, the peak performing single pose fist classifiers exhibit a drop in FRRs
from 29.56% without any retraining to 1.11% when three sessions are included. These improvements are also
associated with a more modest, but still undesirable, increase in FARs—0.97% to 5.82% for fist. In addition, we
note that, in general, ensemble blenders of multiple hand poses outperform individual poses. Peak performance,
in terms of HTER, is 2.14%, attained with the fist/open blender after including data from three retraining sessions.
These results confirm that enrollment data alone are insufficient to train robust classifiers, most likely due to
variations in the way people perform hand poses over time. We argue that either a prolonged multi-session
enrollment, or a longitudinal retraining protocol, will be a requirement for any practical bio-acoustic wrist
authentication system.
One limitation of our evaluation method is that the size of the genuine test set shrinks as we increase the

number of retraining sessions. In order to ensure this change is not impacting our FRR results, we conducted
an additional analysis in which we fixed the recall sessions to the two sessions following (re-)training. For
example, when not retraining, we used the first two recall sessions—those directly after enrollment. Similarly,
when retraining with three recall sessions, we used the last two recall sessions—those directly afterwards. Figure
5 contrasts the retraining performance between those two evaluation methods for two classifier configurations
(fist and the fist/open ensemble). Both methods show broadly similar trends, suggesting our retraining methods
are not unduly impacting the results.
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(a) Original classifiers trained with the enrollment set only (b) Classifiers retrained with the enrollment set and first two recall sessions
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Fig. 6. Probability score distributions [42] of genuine and imposter test samples across all nine subjects using the fist/open
blender. (a) shows scores using the enrollment classifiers, and (b) shows scores after including two retraining sessions.

To shed further light on the impact of retraining, we plot probability score distributions of each genuine user
and their imposter test sets in Figure 6. We include a set of plots from training with the enrollment set alone (left)
and a second set in which the first two recall sessions have been used for retraining (right). These charts clearly
demonstrate the effectiveness of retraining: without retraining, user and imposter distributions are relatively
proximate to each other and, at times, overlapped; there is also a wide spread of genuine user scores, suggesting
a default 0.5 threshold will lead to poor performance. After retraining, the two distributions are well separated
with genuine scores accumulating above 0.5.

5.7 Selecting Hand Poses
In both the first study and second study, single-pose classifiers built on data from the fist trials showed the best
performance in terms of average HTERs, followed by the classifiers built on relax data, with those built on open
data leading to the poorest results. Among the two-pose classifiers, blenders built from the combination of fist
and open poses performed the best in both studies, achieving average HTERs of 0.67% (𝑘 = 4) and 2.14% (after
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Fig. 7. The first graph shows average FRR/FAR (with respect to varying number of recall sessions in the retrain set) based on
a fixed 0.5 threshold. The second graph shows the effects of starting with a 0.2 threshold, and increasing it to 0.5 after two
rounds of retraining. Both charts use the fist/open blender.

retraining with data from three recall sessions), respectively. There were mixed results with respect to the three
pose classifier: in the single session study, it led to peak performance (0.31% HTER) while in the multi-session it
achieved 3.96% HTER, and was outperformed by the fist and open blender. This could be due to the increased
diversity in the poses in the multi-session study manifesting as a greater overlap between the poses adopted
for relax and fist trials—both poses involve flexing the fingers to a greater or lesser degree and over time, the
boundaries between the two may have blurred, reducing the value of the data that can be captured from the
combination of these poses. Evidence to support this assertion comes from the fact that while the relax classifiers
generally outperformed the open classifiers in both studies, the combination of fist and relax was also inferior to
fist and open in both studies. Compared to the highly distinct poses of fist and open, the data that can be captured
from fist and relax is, at least partially, redundant.

5.8 Hand Pose Variability
Examination of the classifier score distributions in Figure 6 reveals participants one through five show a relatively
broad spread of results with un-retrained classifiers (compared to participants six through nine) and well-
separated scores after retraining. To examine the potential causes for these changes, we viewed video recordings
for participants one through five. This revealed all five participants showed inconsistencies in performing the
hand poses. This was particularly prominent for the relax pose, which all five participants performed with highly
varying degrees of finger flexion (fingers more or less flexed), ultimately forming relax poses that were frequently
similar to the fist and, less often, to the open poses. There was also variability in how forcefully the poses were
enacted. Participants one through four, for example, produced the open pose with fingers both naturally and
comfortably held and also, at other times, very widely splayed. These variations may help explain the superiority
of the fist based classifiers over the other two poses—in general there was lower variability in how fist was
enacted. In addition, the relatively high frequency with which relax resembled fist helps explain why blenders
which combined these poses were less effective than expected.

5.9 Adapting Thresholds
A real world biometric authentication system needs to operate with a minimum of training. However, Figure 4
shows that FRRs with our system are high for the initial few donnings—before there is sufficient data to retrain
models. However, EER results tell a different story: peak EERs without retraining were competitively low for the
fist and open blender (2.76%) and even the fist-only classifier (5.78%). These results suggest that classifiers trained
on the enrollment sets alone can effectively distinguish between users and imposters. The sample probability
score distributions from the fist classifiers trained on the enrollment set shown in Figure 6(a) sheds light on how
these distinctions are achieved. This figure suggests that although many genuine user authentication attempts
result in scores beneath 0.5, they remain separable from imposter scores, which are generally clustered below 0.2.
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Based on these observations, we suggest that lowering thresholds for the sessions immediately after enrollment
would enable considerably improved FRRs at the cost of a small rise in FARs. Figure 6(b) shows probability score
distributions after two retraining sessions: user and imposter scores are more widely separated, with imposter
scores broadly unchanged in their distributions and user scores accumulating above 0.5. This demonstrates that
the classifiers are becoming more effective at distinguishing between the two classes based on the addition of a
more diversified set of genuine samples. This suggests that threshold values after several rounds of retraining
could be incrementally raised to 0.5, a typical and well-balanced arrangement.
Figure 7 provides an example to illustrate the impact of this type of threshold adjustment—it assumes an

initial post-enrollment threshold of 0.2 that is adjusted to 0.5 after two rounds of model retraining. With this
setup, the FRRs for the fist/open blender immediately after enrollment are substantially improved over those
reported in Figure 4. We also note that the adjusted FRR for the first recall session, at around 10%, is broadly
comparable to the 11.5% real-world error rate reported for Android pattern lock [13]. This suggests that these
elevated initial FRRs will not result in major disruptions to user experience: they are on par with many other
forms of authentication technique.

5.10 Reducing Authentication Time and Enrollment Time
Reflecting our prior discussion of the hand pose variability and error rates over multiple recall sessions, we
recommend a final system design based on the fist and open blender. However, setup and authentication times
with such a system, if used in the configuration we deployed in our prior studies (see Section 5.3), remain
prolonged. Enrollment will involve 30 repetitions of playback of two seconds of audio in each of two poses and
through four donnings—480 seconds of audio playback in total. Authentication will involve two seconds of audio
played in each pose, thus taking a minimum of four seconds. Such extended authentication and, particularly,
enrollment times may represent a substantial burden to users.

Accordingly, in this section, we investigate the impact of reducing the overall enrollment and authentication
times, via the mechanisms of reducing sample duration and repetition count, on authentication accuracy. We
first examined this in terms of reducing the sample duration by clipping all recordings from the original two
seconds to both one second and half a second in length. This implies reducing the authentication time with two
poses to, respectively, two seconds and one second. Figure 8(a) shows how the error rates of the last two recall
sessions vary with this change. The FRRs increase (from 1.67% to 4.63%) as the audio clips are shortened while
the FARs fall slightly (from 2.62% to 2.39%). While we note that the increase in FRRs represents an additional
burden to users in the case of a single failed authentication attempt, this is offset by the reduction in overall
time spent authenticating over many attempts. For example, a user requires 400 seconds to complete 100 four
second authentication attempts and just 200 seconds to complete 100 attempts that each take two seconds. The
resulting uptick in FRRs (1.67% to 3.33%) is insufficient to impact the substantial aggregate usability improvement
imparted by the shorter cues: repeating a pair of four second authentications would take 8 seconds, as would
repeating four shorter two second authentications. As FARs remain steady with shorter cues, we argue there is
considerable usability advantages to using briefer audio clips.

Building on this result, we sought to explore the impact of the number of repetitions used during enrollment
on final recall session error rates. To do this we used clipped one second audio cues and explored reducing
enrollment repetitions from 30 to ten and five. These configurations lead to enrollment times of 240 seconds, 80
seconds and 40 seconds (plus any time required to follow instructions). Figure 8(b) shows that FRRs modestly
increase (from 3.33% to 4.81%) and FARs fall slightly (from 2.4% to 2.08%) as the number of repetitions decreases.
Considering the sixfold reduction in enrollment times achieved for a modest increase in FRRs, and the previously
demonstrated effectiveness of continuous retraining (suggesting performance will rapidly reach original levels
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Fig. 8. Average FRRs and FARs (after three rounds of retraining) with respect to varying (a) cue signal duration and (b)
number of samples collected during enrollment. Both charts use the fist/open blender.

as re-training data accumulates), we suggest the collection of five samples per pose in each of four enrollment
donnings, taking just 40 seconds, will support reliable user authentication.

5.11 Model Training and Authentication Time Overheads
To determine the model training overheads, we measured the MFCC and PSD feature extraction time and SVM
training time on a Linux machine equipped with Intel i7-7700 CPU (3.60G Hz) using the sklearn libraries in
Python. Concatenated MFCC and PSD consists of 414 features. Based on our final recommendation (1 second cue
signal duration per pose, and 4 enrol donnings with 5 samples per pose), we measured the feature extraction
time and training time across the 10 genuine users. We used 20 genuine samples and 100 imposter samples to
train fist and open ensemble classifiers. On average, it took 882 milliseconds (SD=50) to extract the full feature
set, and took 60 milliseconds (SD=4.6) to train the two classifiers. The total size of the extracted feature sets
was 448 Kilobytes, and the total model size was 193 Kilobytes (SD=16.4). The prediction (authentication) time
was also fast, taking only 44 milliseconds (SD=1.5) on average. Although we evaluated these overheads on a
PC, considering the small training set size and model size, we expect training and loading classifiers directly on
smartwatches should be feasible.

6 STUDY 3: ENROLLMENT AND AUTHENTICATION USABILITY
To assess the usability of our authentication system, we conducted a study using the optimal system configurations
identified in Section 5.10. Specifically, we used the combination of fist and open hand poses, one second audio
cues and enrollment sessions involving four donnings, each featuring five cue repetitions. The goal of this study
was to assess the subjective experience of using WristAcoustic.

6.1 Methods
The study took place in a quiet office environment. Participants were provided with detailed instructions and
were encouraged to ask questions to the moderator. They also had the opportunity to practice both enrollment
and authentication sessions for a few minutes. Participants then experienced the full enrollment process, and
then immediately performed two authentications, removing and re-donning the watch between each session.
Enrollment was moderated by a researcher who aided participants donning the prototype, controlled playback
of the audio cues and instructed participants to perform the fist and open poses at the appropriate times. After
enrollment the participants completed a short survey consisting of the system usability scale (SUS) [1] and the
unweighted NASA Task Load Index (TLX) [15] questions. In addition, they were asked to rate each hand pose on
the the Borg-10 perceived exertion scale [48].
After completing this survey, the participants completed two authentication sessions, taking the watch off

and re-donning it prior to each one. To deliver a fully automatic authentication process that did not require
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moderator invention, short audio cues (150 millisecond beeps) were used to mark pose changes: an initial beep
signified the start of the authentication session. Participants then adopted the fist pose and held it while one
second of white noise was played through the wrist. After a second beep, they moved to the open pose and held
that while another second of white noise was played. Data from both poses was collected and the moderator
observed participant performance live. If a participant was judged to have failed to produce the correct pose at
the designated time, they were requested to continue to complete authentication sessions until a total of two
correct sessions were recorded. We logged the number of pose production failures as measure of task difficulty.
After the two correctly completed sessions, participants were provided with a final survey assessing levels of
SUS, TLX and Borg-10 experienced during authentication sessions.

6.2 Demographics
We recruited a new group of 15 participants. Seven were female and eight male. The average age was 26.2 (SD=5).
The average height and wrist circumference were 168.1 centimeters (SD=7.5) and 15.5 centimeters (SD=1.6),
respectively. Full details can be found in Appendix B.

6.3 Authentication Accuracy
In order to validate the recommendations made in Section 5.10, we first evaluated authentication performance. To
train the fist and open binary classifiers for each genuine user, we used all genuine user samples collected from
the four enrollment donnings (20 per pose), and selected ten samples from each of the ten imposters (100 in total)
that we recruited during the Study 2. For each genuine user, we measured FRRs using the four samples collected
through the two authentication tests. To measure FARs, we created a fixed imposter test set for a given genuine
user, selecting all four samples from all other genuine users. We trained a separate classifier for each pose, and
used them together as an ensemble blender to predict the final probability (authentication) scores. Using this
setup, we recorded a single authentication failure across all 15 genuine users (30 tests), corresponding to an FRR
of 3.33% and in line with our expectations for this system configuration. The average FAR was 1.90% (SD=3.7).

6.4 Usability Results
There were two failures to perform the correct hand poses in the correct sequence. Two participants each failed
during the their first authentication attempt. As such, the failure rate for this task of was 6.25%. This is likely due
to the novelty of the task. The fact there were no failures in the second authentication sessions suggests that
learning times for this task may be short. In terms of the subjective measures, mean Borg CR10 scores during
enrollment were 3.1 (SD=1.9) and 3.3 (SD=2.4) for fist and open poses respectively. This indicates a moderate
level of exertion and likely reflects the somewhat prolonged nature of the task, involving wearing and re-wearing
the watch four times. Supporting this explanation, mean Borg CR10 scores for the shorter authentication sessions
were 2.1 (SD=2.0) and 2.3 (SD=2.4) for fist and open, levels corresponding with slight exertion. Mean SUS scores for
enrollment and authentication were 76.9 (SD=11.2) and 76.4 (SD=13.7), indicating that the participants generally
felt that WristAcoustic—configured with the fist and open blender and based on a total of two seconds of cue
signal playback duration—achieves “good” usability [1]. In addition, the unweighted overall workload scores from
the NASA TLX for enrollment and authentication sessions were 3.76 (SD=2.6) and 3.42 (SD=3.7), respectively,
indicating that the participants experienced low levels of mental and physical workload, interpreted according
to Grier [11]’s analysis of 200 studies deploying TLX in a wide range of tasks. Indeed, these workload scores are
lower than the mean values of approximately 6 reported for entering 4-digit PIN items on smartwatches [33].
Considering that these data prior are related to PIN item entry usability—i.e., the workload costs of PIN setup and
memorability are not included—the low scores we record in this work indicate there may be usability advantages
to our approach over traditional PINs. Taken together, these results suggest that participants’ experience with
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WristAcoustic was positive: although enrollment involved a moderate level of exertion, actual authentication
processes were perceived as requiring only slight effort, and measures of usability and workload were good
throughout. This study suggests that users will face few usability barriers to setting up and authenticating with
WristAcoustic.

7 STUDY 4: POSTURE VARIATIONS AND NOISE
While the previous studies in this paper have demonstrated the performance of WristAcoustic with a variety
of analytic approaches, over a sustained period of time and in a realistic, more usable, configuration, they all
took place in a relatively controlled setting. In the real world, users can be expected to don their watches and
authenticate in somewhat more diverse environments and situations—in various body poses and in the presence
of various forms of distraction and interference. To address the impact of these issues on the performance of
WristAcoustic we conducted a study in which participants adopted different typical body poses and were exposed
to different forms of acoustical and motion/vibration interference during recall sessions.

7.1 Methods
We applied the procedures from the usability study to collect enrolment data. After completing enrolment,
participants put the watch back on and completed twenty-two recall sessions, also following the procedures in the
usability study. These sessions were organized into two examples of each of 11 different pose or noise conditions.
Six of these explored arm poses - this was embodied by asking participants to hold their arms near horizontal
(approximately 20 degrees), raised (approximately 45 degrees) and near vertical (approximately 70 degrees) with
their elbows resting both on and off a desk in front of them. These variations represent a supported or at-rest
forearm versus one suspended in free space at a quite wide spectrum of comfortable orientations. They embody
typical poses a user might hold their arm in during authentication. Three further conditions explored audio noise:
participants adopted the default pose (arm raised and resting on the desk) while samples of music, speech (in
the form of a news clip) and ambient noise (recorded from a busy coffee shop) were played through a standard
speaker at between 60 and 70 dB. The final two conditions also used the default pose and involved physical
disturbance: in one, participants sat on a massage chair (a surrogate for various situations, e.g., transportation, in
which a person may be regularly jostled) as it operated while in the second they held a vibrating mobile phone in
their right hand (the one not wearing the watch prototype) in comfortable proximity to the watch (approximately
20 cm away). Due to the requirement to precisely perform hand poses during authentication, it is not possible for
participants to simultaneously hold a phone in their watch hand. This set of situations was selected to represent
common everyday scenarios in which people might authenticate with WristAcoustic.

7.2 Demographics
We recruited a new group of ten participants. Four were female and six male. The average age was 24.7 (SD=3.8).
The average height and wrist circumference were 168.9 centimeters (SD=7.9) and 15.4 centimeters (SD=1.1),
respectively. Full details can be found in Appendix B.

7.3 Results
We applied the usability study evaluation methodology (see Section 6.3) to determine performance across the
twenty-two authentication trials. Arm pose variations led to minimal changes in FRR: we observed just a single
failure in the study. This suggests that WristAcoustic is robust to a wide range of arm poses and postures and
will continue to offer high authentication performance regardless of how users choose to hold their upper bodies.
In addition, we recorded no authentication failures in the presence of audio noise; this result is expected, as
the microphones used in the system are surface transducers that pick up minimal air transmitted sound. We
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showed similar strong performance in the motion and vibration conditions: no authentication failures. This strong
performance is likely because motions delivered by the massage chair are very low frequency, that vibrations from
the buzzing phone attenuate strongly during their passage through the body, and that relatively low amplitude
in-air signals generated by phone’s vibration are, again, simply not picked up by the surface transducers. In
addition to this strong performance in terms of FRRs, we recorded a mean FAR of 1.67% (SD=1.9) across the
whole study, a figure comparable to that attained in the usability study. Taken together, these results suggest
WristAcoustic will perform well in the kinds of diverse situations that users may encounter during real world
authentication attempts.

8 DISCUSSION

8.1 Performing Multiple Poses over Time
Single-session study results (see Table 8 and Table 9 in Appendix E) show promising levels of performance for
both classifiers built on both individual and combined hand poses: mean HTERs approach zero in our first two
studies. However, our multi-session study presents a starkly different profile of highly elevated FRRs when users
seek to authenticate after a break. Analysis of study videos suggests these results are likely due to inconsistencies
in the way participants perform hand poses between multiple recall sessions. Participants may use more or less
finger flexion, more or less force, or present other variations such as in wrist extension/flexion. These results
suggest that individuals are poorly equipped to perform functionally identical hand poses over time—although
they exhibit a clear conceptual understanding of the basic poses, they interpret and express these instructions
variously.

This finding leads to a number of design implications and suggestions for future avenues of investigation. First
and foremost, the intuition that requiring more hand poses will increase performance by sampling more unique
data points [46] may not hold up to scrutiny. In our multi-session study, a blender on all three poses led to reduced
performance (3.96% HTER with 4.44% FRR) compared to that achieved with the classifier based on the fist alone
(3.26% HTER with 1.11% FRR). This may be because sampling more poses involves increased variability compared
to that achievable with a single (or small number of) well-defined poses. As such, we suggest poses should be
carefully selected to be as simple and unambiguous as possible—in our studies, fist is likely the best example here.
Future systems in this area should minimize the number of poses from which they get sample data: based on
the multi-session recall results, our recommendation is to use the fist and open poses. In addition, our usability
evaluation showed that the enrollment and authentication UX involving those two poses is generally easy to
learn and use, and entails low levels of workload and exertion. Finally, we note clear guidance and instructions
will be necessary to ensure the consistent performance of hand poses.

8.2 Retraining Recommendations
We demonstrated that error rates can be stabilized over time by retraining classifiers. For example, fist classifiers
led to an average HTER of 15.26% after enrollment but improved substantially with retraining, ultimately reaching
3.26% HTER with three retraining sessions. Blenders showed similar trends, with the best performing combination
of fist and open showing an improvement from 20.32% HTER to 2.14% after retraining. We believe that retraining
will be a necessary part of any future system in this space in order to accommodate variations in pose enactment
and other contextual changes that go beyond the current scope of our studies.
That said, retraining was not unreservedly beneficial. In addition to achieving greatly improved FRRs, it was

also associated with a more modest—and undesirable—increase in FARs. While we can observe this trend, our
current data set offers few insights into how it might play out over longer periods. However, we can speculate
about the potential causes: during retraining, we continuously expand the genuine user test set while we maintain
a fixed imposter train set; this likely results in an increase in genuine user classification boundaries while imposter
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boundaries shrink. Accordingly, we recommend that future work update the imposter train sets in tandem with
the genuine user train set by selecting new and unique imposters to diversify the set’s overall coverage.

8.3 Evaluation Metrics: EER vs FAR/FRR
Existing work on biometric authentication [7, 24, 25, 37, 44, 46] typically presents EERs as the sole means to
measure authentication accuracy. Results in this paper, however, suggest that this approach may not be sufficient
and may, in fact, lead to misleading characterizations of performance [34, 42]. For example, average EERs for
our multi-recall study are low without retraining and improve markedly after retraining: with the fist and open
blender, they reduce from 2.76% to 0.51%. However, the corresponding FRR results, show a dramatically different
trend with a probability threshold of 0.5. For the fist and open blender, a high figure of 40.3% without retraining
reduces to a reasonable 1.67% after retraining. This suggests that, despite low EERs, users may encounter usability
issues in the form of high rejection rates during initial use.
There is a simple explanation for the differences between EERs and FRRs. EER figures represent optimal

probability thresholds for each user, while FRRs are calculated using a fixed threshold (e.g., 0.5) for all users.
Placing the decision point at an optimal per-user location almost inevitably leads to improved performance,
as it can accommodate a wide range of genuine user probability score distributions. Figure 6 illustrates this
point well: subjects 1,3,4,5, and 9, for instance, show score distributions that spread well below the 0.5 threshold
while still remaining distinct from the scores returned by imposters. These results beg a question: which type of
threshold is valid? The answer may be dependent on context. We argue that it is infeasible to determine optimal
thresholds in real-world systems and deployments—it is unclear what sampling strategies could be used to derive
and validate them. As such, a more realistic approach may be to deploy the methods outlined in this paper:
using preset thresholds that adapt according to a fixed schedule as more genuine user data is accumulated. For
example, in the multi-session study reported in this paper, using a threshold that changes from 0.2 to 0.5 as more
retraining sessions become available achieves a competitive level of performance over all sessions. In general,
we recommend that future work that seeks to understand the security and usability implications of biometric
classifiers focuses on (1) how probability score distributions change over time, (2) emphasizes the use of fixed
thresholds, and (3) explores how these impact unbiased FARs and FRRs. In many cases, over reliance on EERs, and
the optimal thresholds they rely on, will lead to reporting results that tell incomplete, impractical and possibly
misleading stories.

8.4 Limitations
There are a number of limitations to our work. We summarize these in the sections below.

8.4.1 Sample Limitations. While sample sizes in our first two studies (N=25 and N=20) exceed those in much
prior work in this area [24, 37, 46], more substantial studies would increase confidence in the results we report.
Our second study participants were intentionally screened to be male, a choice that facilitated creating matched
groups of imposters and genuine users. While we believe that future studies should target broader demographics,
we also note that analysis in our first study (100 permutation evaluations) showed no statistical differences in
performance between male and female participants. Thus, we believe our screening procedures in the second
study do not threaten the validity of the results. Another limitation of our sample is that almost all participants
were Asian. As such, the performance of WristAcoustic on other ethnic groups remains unknown, and needs to
be investigated as a part of future work.

8.4.2 Multi-session Limitations. The size of our current studies also presents limits to our classifier evaluation
procedures and the extent to which we can make practical, actionable recommendations about likely real world
performance. Perhaps most critically, in our current study when we evaluate retraining, the size of the test sets
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we use changes—as we retrain with more sessions, we have fewer sessions that can be used for testing. Smaller
test sets may be associated with improvements in classifier performance on key metrics such as FRR. The best
solution to this problem would be collection of substantially extended data sets (e.g., with a large number of
sessions captured over several weeks or months) that can support a robust analysis of this issue. We present
an initial exploration of how this could be achieved by fixing the size of the test sets (two sessions) used to
evaluate all trained and retrained classifiers in Figure 5. These results show similar trends of decreasing FRRs
to those in the main analysis, suggesting that changes in test set size may not be unduly impacting the results
we report. Beyond this issue, our current data is insufficient to support reliable recommendations about a range
of practical issues, such as the number of retraining sessions that will be required to achieve robust long-term
model performance or the kinds of sampling strategy (for both genuine user and imposter data) that are optimal.
Only by collecting extended data sets, featuring large numbers of recall sessions, will we be able to explore these
issues in the detail they deserve.

8.4.3 Procedural Limitations. There are also limitations to our final two studies. In our usability study, a moderator
assisted participants putting on and taking off the watch and, during enrolment, also cued production of the
appropriate hand pose at the appropriate time. The usability results for enrollment may have been impacted by
this in-person support and future studies of this system should re-examine usability after creating complete and
robust prototypes that do not require live moderator intervention. In addition, while our study assessed a common
set of usability measures, it cannot be considered a complete and thorough evaluation of this multi-faceted
construct. For example, we did not assess the learnability or memorability [32] of using WristAcoustic. Longer
term studies on more mature prototypes may be able to present a more rounded and complete evaluation in
the future. In addition, in our final study, we explore body poses and noise conditions. This work could also
be extended. While our current (tethered) prototype did not allow us to explore more extreme body posture
variations, such as lying down, they should be examined in the future. In addition, while we examined some
forms of vibration, future studies on standalone prototypes should go further: it would be interesting to examine
system performance while, for example, participants are walking or riding public transport. Extended studies of
real world usability and robustness to various environmental conditions would do much to complement data and
results reported in the current paper.

8.4.4 Prototype Limitations. Finally, it is also worth discussing the limitations inherent to our prototype device.
We developed a bespoke system capable of generating and recording through-wrist audio signals over a wide
frequency range. To achieve this, we selected relatively high-end actuators and sensors that do not currently
appear in smart watches. Integrating such components into practical, real world devices would require that they
add substantial value to use cases including, but also beyond, secure authentication. This may be realistic: the
proliferation and rapid development of ear wearables is resulting in major advances in various forms of novel
bio-acoustic sensor, such as voice pickup units [54]. This is increasing the performance and driving down the cost,
size and power consumption of such devices. In addition, advanced vibration actuators are already a standard
and ever evolving part of smartwatches and the list of applications to which wrist bio-acoustics have been
employed for is growing: hand gesture recognition [18], the recognition of grasped objects [23], the localization
of on-body touches [49]. However, beyond this speculative future, we also note that our use of relatively high
end components is also a useful starting point for developing more realistic versions of our system. If the data
and results we report represent something approximating peak performance, then it will be interesting and
valuable to determine whether performance degrades or is maintained on more realistic, and currently deployed,
hardware. A specific point of interest here would be to compare performance directly with a system configured
akin to that described in Lee et al. [24]. In this paper, built-in watch vibration motors and accelerometers are used
to generate and record vibrations used for authenticating users. While same session performance is modestly
reduced (to 1.37% EER) from that reported in this paper (as low as 0.01% EER in our first study), there is limited
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data on multiple sessions and how the system would respond to varying hand poses. Given the high variability we
observe in response to these factors, we identify a need for future studies to replicate the extended (multi-session)
study protocols proposed in this paper. An important topic for future work on WristAcoustic would be to test
its performance on existing consumer devices, and assess whether the findings reported in this paper can be
maintained with lower-end built-in actuators and sensors.

9 CONCLUSION
We studied the feasibility of authenticating smartwatch users based on acoustic responses measured through the
wrist. By training separate classifiers for three hand poses (relax, fist, and open), and using them as an ensemble
blender, we achieved an average EER of 0.01% in a single-session study (N=25), significantly outperforming
prior on-wrist biometric authentication systems. Our multi-recall session study (N=20), however, demonstrated
variability in the way people perform hand poses over time, leading to significant elevations in FRRs. The relax
pose, in particular, was highly problematic: many participants interpreted it as either a loose fist or relatively
open palm. Hence, the blenders that used relax classifiers (which offered diverse and/or redundant information)
were less effective. Consequently, the fist/open blender (two distinctive poses) demonstrated the most consistent
performance over multiple sessions: an average EER of 2.76%. In addition, we show that it is necessary to
periodically retrain the classifiers to stabilize error rates for long-term use. For instance, the average FRR for the
fist/open blender dropped rapidly from 40.3% (without retraining) to 1.67% after including samples from the first
few recall sessions and updating the classifiers. Furthermore, our usability evaluation demonstrates that people
generally find the overall enrollment and authentication process requiring those two poses easy to learn and
use, and that enacting them results in low levels of mental and physical workload. In addition, our final study
demonstrates that WristAcoustic performs robustly in a wide variety of typical situations and environments,
demonstrating strong performance in the kinds of situations users might experience during everyday real-world
use.
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A PRE-PROCESSING RESPONSE SIGNALS
Response signal alignments are often performed using cross-correlation between response signals and stimulus
signals [25, 26]; however, this approach is not applicable in our case since our transmitted signal involves white
noise. Thus, we tested 𝐻0 : 𝑥 (𝑡) ∼ Gaussian(0, 𝜎2

0 ) versus 𝐻1 : 𝑥 (𝑡) ∼ Gaussian(0, 𝜎2
1 ) with 𝜎1 ≫ 𝜎0 in order to

extract the response signals exactly. The test statistic is given as 𝐹 = 𝑆21/𝑆20 , where 𝑆0 is the standard deviation
computed from the data without application of the cue stimuli, and 𝑆1 is the standard deviation of data at each
time frame (e.g., 2 milliseconds). We detected the start and end of the response signal by finding the time frames
where 𝐹 > 𝐶𝜒20.95,𝑚−1/(𝑚 − 1) with the number𝑚 of data points in each time frame and the 95th-percentile of
the Chi-square distribution with𝑚 − 1 degrees of freedom. We used𝐶 = 10 as 𝜎1 is at least 3 times larger than 𝜎0.

B STUDY DEMOGRAPHICS
Table 6 shows the demographics of study participants recruited for three studies we performed. In multi-recall
session study, 10 participants were asked to come back for another five recall sessions after enrollment. These
participants were used as the genuine set in the evaluation. The other 10 participants completed enrollment only;
we used their data as the imposter train set.

C FIRST STUDY ACCURACY RESULTS
Tables 7 and 8 show the first study accuracy results for all feature sets, including PSD, transfer function, MFCCs,
and the top performing PSD/MFCC concatenation feature. The average EER, FAR, and FRR of per-pose classifiers
are presented in Table 7; those three accuracy reports for the multi-pose blenders are presented in Table 8.

D PHYSICAL CHARACTERISTICS OF USERS AND AUTHENTICATION ACCURACY
Figure 9 shows how the first study authentication accuracy changes by physical characteristics of genuine users.
For this analysis, we picked the fist-based classifiers trained with the PSD features and 𝑘 = 4, and HTER as the
authentication accuracy metric. In each of the 100 permutation rounds, we grouped the 15 genuine users based on
their “gender,” “age,” “wrist size,” “weight,” and “height.” We performed two-sample t-tests to compare the HTER
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Table 6. Demographics of study participants.

Study 1 (N=25) Study 2 (N=20) Study 3 (N=15) Study 4 (N=10)

Single-session Multi-recall session Usability Performance robustnessGenuine users Imposters

Ethnicity

White 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (10%)
Asian 25 (100%) 10 (100%) 10 (100%) 15 (100%) 9 (90%)
Black 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Others 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Gender Female 14 (56%) 0 (0%) 0 (0%) 7 (46%) 4 (40%)
Male 11 (44%) 10 (100%) 10 (100%) 8 (53%) 6 (60%)

Age
18-20 20 (40%) 0 (0%) 0 (0%) 1 (7%) 1 (10%)
21-30 12 (48%) 9 (90%) 10 (100%) 11 (73%) 8 (80%)
31-40 3 (12%) 1 (10%) 0 (0%) 3 (20%) 1 (10%)

Handedness
Right-handed 22 (88%) 9 (90%) 6 (40%) 15 (100%) 8 (80%)
Left-handed 2 (8%) 1 (10%) 3 (30%) 0 (0%) 2 (20%)
Both-handed 1 (4%) 0 (0%) 1 (10%) 0 (0%) 0 (0%)

Weight (kg)

Not respond 0 (0%) 0 (0%) 0 (0%) 1 (7%) 0 (0%)
[40, 45) 0 (0%) 0 (0%) 0 (0%) 1 (7%) 0 (0%)
[45, 50) 1 (4%) 0 (0%) 0 (0%) 2 (13%) 0 (0%)
[50, 55) 5 (20%) 0 (0%) 0 (0%) 0 (0%) 1 (10%)
[55, 60) 4 (16%) 0 (0%) 0 (0%) 2 (13%) 1 (10%)
[60, 65) 4 (16%) 2 (20%) 2 (20%) 0 (0%) 4 (40%)
[65, 70) 6 (24%) 3 (30%) 0 (0%) 2 (13%) 2 (20%)
[70, 75) 3 (12%) 3 (30%) 4 (40%) 1 (7%) 1 (10%)
[75, 80) 2 (8%) 1 (10%) 1 (10%) 4 (27%) 1 (10%)
Above 80 0 (0%) 1 (10%) 3 (30%) 2 (13%) 0 (0%)

Height (cm)

[150, 160) 6 (24%) 0 (0%) 0 (0%) 3 (20%) 1 (10%)
[160, 170) 8 (32%) 1 (10%) 3 (30%) 4 (27%) 4 (40%)
[170, 180) 8 (32%) 9 (90%) 5 (50%) 7 (47%) 3 (30%)
[180, 190) 3 (12%) 0 (0%) 2 (20%) 1 (7%) 2 (20%)

Wrist circumference (cm)

[13, 14) 1 (4%) 0 (0%) 0 (0%) 3 (20%) 1 (10%)
[14, 15) 5 (20%) 2 (20%) 1 (10%) 2 (13%) 3 (30%)
[15, 16) 10 (40%) 3 (30%) 3 (30%) 4 (27%) 3 (30%)
[16, 17) 6 (24%) 4 (40%) 4 (40%) 1 (7%) 2 (20%)
[17, 18) 2 (8%) 1 (10%) 2 (20%) 4 (27%) 1 (10%)
[18, 19) 1 (4%) 0 (0%) 0 (0%) 1 (7%) 0 (0%)

Table 7. Authentication accuracy for per-pose classifiers. Mean FAR, FRR and EERmeasured over 100 permutations (randomly
selecting 15 genuine users and 10 imposters each time). 𝑘 indicates the number of donnings used for training.

EER (%) Probability threshold = 0.5
𝑘 = 3 𝑘 = 4

Features Hand pose 𝑘 = 3 𝑘 = 4 FAR (%) FRR (%) HTER (%) FAR (%) FRR (%) HTER (%)
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

PSD
Fist 1.72 (0.69) 0.88 (0.46) 1.68 (0.69) 9.41 (3.50) 5.55 (1.80) 1.91 (0.71) 4.55 (2.48) 3.23 (1.27)
Open 2.66 (0.99) 2.05 (0.80) 2.29 (0.85) 10.69 (4.09) 6.49 (2.05) 2.60 (0.93) 5.51 (2.41) 4.06 (1.26)
Relax 2.23 (1.17) 2.02 (1.15) 1.97 (0.90) 7.91 (4.06) 4.94 (2.08) 2.50 (1.09) 4.34 (2.71) 3.42 (1.44)

Transfer
Fist 1.68 (0.69) 0.70 (0.36) 1.75 (0.71) 9.65 (3.53) 5.70 (1.81) 1.98 (0.74) 4.59 (2.47) 3.28 (1.27)
Open 2.66 (0.94) 1.89 (0.77) 2.33 (0.85) 11.70 (4.46) 7.02 (2.22) 2.65 (0.93) 5.76 (2.43) 4.21 (1.26)
Relax 1.87 (1.03) 1.57 (0.90) 2.03 (0.91) 7.57 (3.98) 4.80 (2.04) 2.58 (1.11) 4.18 (2.63) 3.38 (1.41)

MFCCs
Fist 3.06 (0.97) 2.41 (0.85) 1.28 (0.63) 11.04 (3.18) 6.16 (1.61) 1.52 (0.71) 5.25 (1.92) 3.39 (1.02)
Open 4.61 (1.31) 3.12 (0.99) 1.96 (0.93) 13.59 (3.51) 7.77 (1.58) 2.27 (1.00) 5.67 (2.45) 3.97 (1.13)
Relax 5.57 (1.85) 3.57 (1.46) 1.81 (0.71) 15.80 (4.71) 8.80 (2.33) 2.21 (0.86) 11.71 (4.42) 6.97 (2.25)

MFCCs + PSD
Fist 1.48 (0.64) 0.72 (0.43) 1.99 (1.05) 8.02 (3.02) 5.01 (1.48) 2.22 (1.07) 3.99 (2.44) 3.10 (1.27)
Open 2.23 (0.82) 1.59 (0.65) 2.76 (1.28) 8.84 (3.68) 5.80 (1.70) 3.09 (1.39) 4.52 (2.26) 3.81 (1.18)
Relax 2.01 (1.06) 1.75 (1.02) 2.51 (1.43) 7.88 (3.68) 5.19 (1.92) 3.06 (1.66) 3.69 (2.57) 3.38 (1.56)

differences in the two gender groups. As for the others, we performed correlation tests to measure the strength of
a relationship between HTER results and a given physical characteristic. The graphs show the frequency counts
for the resulting p-values.
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Table 8. Authentication accuracy formulti-pose ensemble blenders.Mean FAR, FRR, and EERmeasured over 100 permutations.

EER (%) Probability threshold = 0.5
𝑘 = 3 𝑘 = 4

Features Hand pose 𝑘 = 3 𝑘 = 4 FAR (%) FRR (%) HTER (%) FAR (%) FRR (%) HTER (%)
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

PSD

Fist/Open 0.54 (0.42) 0.15 (0.16) 0.72 (0.63) 3.94 (2.19) 2.34 (1.17) 0.88 (0.69) 0.51 (0.68) 0.70 (0.53)
Fist/Relax 0.30 (0.21) 0.21 (0.17) 0.63 (0.52) 5.19 (2.55) 2.91 (1.27) 0.92 (0.64) 1.21 (1.53) 1.06 (0.80)
Open/Relax 0.62 (0.45) 0.42 (0.33) 0.49 (0.62) 6.42 (3.11) 3.46 (1.58) 0.74 (0.75) 4.26 (2.14) 2.50 (1.13)
Fist/Open/Relax 0.18 (0.14) 0.03 (0.04) 0.30 (0.32) 2.99 (2.23) 1.64 (1.12) 0.44 (0.39) 0.37 (0.51) 0.40 (0.31)

Transfer

Fist/Open 0.59 (0.45) 0.16 (0.17) 0.74 (0.64) 4.41 (2.37) 2.58 (1.23) 0.91 (0.69) 0.58 (0.70) 0.75 (0.53)
Fist/Relax 0.31 (0.21) 0.22 (0.17) 0.69 (0.56) 5.08 (2.54) 2.88 (1.27) 0.99 (0.68) 1.11 (1.48) 1.05 (0.76)
Open/Relax 0.69 (0.48) 0.47 (0.35) 0.49 (0.61) 6.45 (3.08) 3.47 (1.56) 0.77 (0.78) 4.21 (2.14) 2.49 (1.14)
Fist/Open/Relax 0.20 (0.16) 0.03 (0.04) 0.32 (0.33) 3.37 (2.46) 1.84 (1.24) 0.46 (0.40) 0.42 (0.54) 0.44 (0.33)

MFCCs

Fist/Open 0.32 (0.28) 0.11 (0.16) 0.63 (0.55) 7.27 (2.78) 3.95 (1.40) 0.82 (0.68) 0.34 (0.51) 0.58 (0.41)
Fist/Relax 0.57 (0.32) 0.33 (0.25) 0.68 (0.53) 12.26 (3.95) 6.47 (2.01) 0.88 (0.58) 3.68 (2.73) 2.28 (1.40)
Open/Relax 0.87 (0.43) 0.26 (0.21) 0.58 (0.55) 13.39 (3.74) 6.99 (1.86) 0.86 (0.70) 5.07 (2.28) 2.97 (1.17)
Fist/Open/Relax 0.07 (0.09) 0.05 (0.07) 0.41 (0.44) 8.04 (2.84) 4.22 (1.40) 0.62 (0.58) 1.22 (1.41) 0.92 (0.79)

MFCCs + PSD

Fist/Open 0.44 (0.35) 0.11 (0.13) 0.62 (0.52) 3.54 (2.16) 2.08 (1.12) 0.79 (0.59) 0.54 (0.63) 0.67 (0.45)
Fist/Relax 0.28 (0.19) 0.19 (0.16) 0.48 (0.41) 5.08 (2.61) 2.78 (1.29) 0.74 (0.54) 1.09 (1.42) 0.92 (0.72)
Open/Relax 0.54 (0.40) 0.34 (0.28) 0.39 (0.30) 6.78 (2.06) 3.58 (1.03) 0.63 (0.40) 4.16 (1.61) 2.39 (0.80)
Fist/Open/Relax 0.17 (0.14) 0.01 (0.02) 0.24 (0.25) 3.41 (2.47) 1.82 (1.24) 0.39 (0.34) 0.39 (0.52) 0.39 (0.31)
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Fig. 9. Relationship between HTER and physical characteristics (gender, age, wrist size, weight, and height) of genuine users.
For each of the 100 random user set permutations, we performed two-sample t-tests to compared the two gender groups; for
the rest, we performed correlation tests. We picked the fist-based classifiers trained with PSD features and 𝑘 = 4, and their
HTER results for this analysis. The graphs show the frequency count of the resulting p-values.

E MULTI-RECALL SESSION RESULTS
We evaluated multi-recall session performance based on the best performing PSD and MFCC concatenated
features. Table 9 shows the average EER, FAR, and FRR of the three pose-specific classifiers as well as the
multi-pose ensemble blenders. The first row shows the first-visit enrollment performance to validate the second
study results against the first (single-session) study results. The second row presents accuracy results for the
classifiers that were trained with just the enrollment set (i.e., without any retraining). The rest of the table shows
the retraining performance: we increased the number of recall sessions that were included in the genuine retrain
set from one to three.
To show the effectiveness of combining PSD and MFCC features, we also show the performance of these

individual features in Figure 10. It is clear that the two feature sets compliment each other, and show the best
performance when they are concatenated and used together.
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Table 9. Multi-recall session authentication accuracy based on the PSD and MFCC concatenated features. Mean FAR, FRR,
and EER of the pose-specific classifiers as well as multi-pose ensemble blenders, computed across nine subjects. The first row
shows the first-visit enrollment performance. The second row presents accuracy results without any retraining. The rest of
the table shows the retraining performance: we increase the number of recall sessions that are included in the retrain set
from one to three.

Feature Training Testing Hand pose EER (%) Probability threshold = 0.5
FAR (%) FRR (%) HTER (%)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

MFCCs+PSD

Fist 0.00 (0.00) 0.97 (1.56) 0.00 (0.00) 0.45 (0.78)
Open 0.09 (0.28) 0.55 (0.91) 0.00 (0.00) 0.28 (0.45)

Enrollment Enrollment Relax 0.00 (0.00) 3.70 (4.14) 0.00 (0.00) 1.85 (2.07)
First four donnings Last donning Fist/Open 0.00 (0.00) 0.35 (0.60) 0.00 (0.00) 0.17 (0.30)

Fist/Relax 0.00 (0.00) 0.77 (1.41) 0.00 (0.00) 0.38 (0.70)
Open/Relax 0.00 (0.00) 1.08 (1.67) 0.00 (0.00) 0.54 (0.83)
Fist/Open/Relax 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Enrollment Recall 1-5

Fist 5.78 (6.57) 0.97 (1.56) 29.56 (31.98) 15.26 (15.52)
Open 6.28 (7.25) 0.55 (0.91) 46.52 (31.60) 23.54 (15.69)
Relax 10.23 (9.87) 3.70 (4.14) 38.59 (28.37) 21.15 (14.52)
Fist/Open 2.76 (2.85) 0.35 (0.60) 40.30 (33.46) 20.32 (16.55)
Fist/Relax 6.16 (8.68) 0.77 (1.41) 39.48 (33.54) 20.13 (16.51)
Open/Relax 7.13 (8.36) 1.08 (1.67) 45.11 (30.47) 23.10 (14.82)
Fist/Open/Relax 5.06 (6.89) 0.00 (0.00) 52.52 (36.28) 26.26 (18.14)

Enrollment + Recall 1 Recall 2-5

Fist 1.83 (2.07) 3.10 (2.81) 11.94 (13.54) 7.52 (6.08)
Open 2.62 (4.32) 2.87 (3.86) 19.35 (25.84) 11.11 (13.02)
Relax 7.31 (9.84) 5.23 (5.42) 15.19 (22.51) 10.21 (12.06)
Fist/Open 1.43 (3.28) 1.43 (2.19) 11.85 (11.98) 6.64 (5.74)
Fist/Relax 1.94 (3.06) 2.78 (3.18) 12.13 (17.78) 7.45 (8.72)
Open/Relax 3.44 (4.31) 1.97 (2.80) 18.80 (18.94) 10.38 (9.63)
Fist/Open/Relax 1.36 (3.00) 1.50 (2.28) 8.98 (15.46) 5.24 (7.60)

Enrollment + Recall 1-2 Recall 3-5

Fist 1.03 (1.20) 3.84 (3.50) 2.10 (3.40) 2.97 (1.55)
Open 2.07 (3.84) 3.29 (4.41) 14.44 (30.37) 8.87 (15.70)
Relax 5.51 (7.58) 6.25 (5.47) 7.04 (13.99) 6.64 (8.46)
Fist/Open 0.50 (1.19) 1.81 (2.26) 4.20 (10.98) 3.01 (5.29)
Fist/Relax 0.40 (0.60) 4.01 (4.19) 3.33 (10.00) 3.67 (4.68)
Open/Relax 1.89 (3.20) 2.86 (3.27) 4.07 (11.03) 3.46 (5.28)
Fist/Open/Relax 1.13 (3.02) 2.46 (3.70) 3.70 (11.11) 3.08 (5.51)

Enrollment + Recall 1-3 Recall 4-5

Fist 1.25 (1.79) 5.42 (5.30) 1.11 (3.33) 3.26 (2.63)
Open 2.04 (4.37) 4.54 (5.53) 12.41 (20.67) 8.47 (10.83)
Relax 4.38 (7.16) 8.15 (6.73) 6.30 (16.54) 7.22 (9.07)
Fist/Open 0.51 (1.08) 2.62 (3.46) 1.67 (4.41) 2.14 (2.32)
Fist/Relax 0.17 (0.51) 5.17 (6.14) 3.33 (10.00) 4.25 (4.97)
Open/Relax 1.66 (2.52) 3.32 (3.50) 5.56 (16.67) 4.44 (7.88)
Fist/Open/Relax 0.79 (2.22) 3.47 (4.88) 4.44 (13.33) 3.96 (6.55)
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(c) MFCCs+PSD
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Fig. 10. Multi-session average FRR, FAR (threshold 0.5), and EER with respect to varying number of recall sessions included
in the retrain set (“number of retraining sessions”). “0” indicates that classifiers trained only on enrollment data were used.
We show the individual PSD and MFCC feature set performance through the graphs in (a) and (b), and the concatenated
performance through the graphs in (c).
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