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ABSTRACT
Wearable technologies such as smart-glasses can sense, store and
display sensitive personal contents. In order to protect this data,
users need to securely authenticate to their devices. However, cur-
rent authentication techniques, such as passwords or PINs, are a
poor fit for the limited input and output spaces available on wear-
ables. This paper focuses on eyewear and addresses this problem
with a novel authentication system that uses an alphabet of simple
tapping patterns optimized for rapid and accurate input on the tem-
ples (or arms) of glasses. Furthermore, it explores how an eyewear
display can support password memorization by privately present-
ing a visualization of entered symbols. A pair of empirical studies
confirm that performance during input of both individual pass-
word symbols and full passwords is rapid and accurate. A follow-up
session one week after the main study suggests using a private
display to show entered password symbols effectively supports
memorization.

CCS CONCEPTS
• Security andprivacy→Graphical / visual passwords; •Human-
centered computing →Mixed / augmented reality;
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1 INTRODUCTION
Wearable smart glasses are an emerging device category that present
many novel interaction challenges [30]. Equipped with large, high
resolution and private graphical displays, they are capable of dis-
playing a rich range of contents to their users [36]. Indeed, the fact
that the content they show is visible only to a user may make them
the ideal platform for display of sensitive or secure information.
However, their diminutive input surfaces [11, 19] complicate this
issue by making authenticating securely to these devices a chal-
lenge. Conventional authentication techniques, such as passwords,
require users to accurately enter long, complex strings, a task that
is likely to be extremely laborious on a pair of glasses. Even the
much simpler PINs require users to enter a sequence of numeric
data, an operation that is not directly supported on smart glasses.

A number of factors contribute to this problem. As touch sur-
faces are necessarily offset from displays, direct touch-screen in-
teraction is not possible [1, 11, 19]. Furthermore, input surfaces,
mounted on areas like the arms of glasses, are typically out of
sight. This means all input needs to take place eyes-free [1, 11].
Finally, the input surfaces are also small compared to conventional
controllers. The Google Glass, for example, features a touch input
panel that is 76.2mm by 10.4mm in size [11]. To address these limi-
tations, the standard password entry system on Glass is based on
a non-alphanumeric symbol set composed of ten strokes and taps.
However, we note that performance assessments of this technique
suggest it is slow and cumbersome [35]. In particular, authors re-
port that users find its complex two finger multi-direction swipe
gestures to be error-prone. Furthermore, the memorability of pass-
words using this kind of symbol set is an unknown quantity. Given
the well-documented propensity for users to forget alpha-numeric
passwords, or to use insecure coping strategies such as password
re-use [23], we argue that many users will struggle to memorize
this kind of non-standard content.

To address these problems, this paper contributes a novel pass-
word scheme designed directly for touch surfaces on the temples (or
arms) of glasses. This scheme uses a symbol set of ten different one
and two finger tapping gestures. We also contribute an assessment
of the viability of this scheme through the results of two empirical
studies. The first catalogs basic performance when entering the
symbols, while the second explores performance during full pass-
word entry. As the symbol set is non-traditional, we also suggest
passwords constructed using it may be challenging for users to
remember. To deal with this issue, the final contribution of this
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paper is the idea of using the private display of smart glasses to
present password hints in the form of a persistent visual depiction
of entered symbols. We evaluate this idea in the second study by
assessing memorability with and without hints both in the initial
session and in a follow-up one week later. We also analyze the
passwords created by users to explore if there are any systematic
biases in symbol selection that would increase their guess-ability
and, consequently, lower the resistance of the system to intelligent
guessing attacks.

2 RELATEDWORK
2.1 Password/ Authentication Entry Systems
A range of technologies have been proposed to support secure au-
thentication to or with smart-glasses. For example, Chan et al. [5]
propose a One Time Password (OTP) system that takes advantage
of the camera on Google Glasses. In this system, a user generates a
QR code on his or her phone, and then scans this with the glasses to
authenticate. While this sidesteps problems of making input on the
eyewear, it remains a complex process in which interaction with a
pair of devices and applications needs to be organized and managed.
The feasibility of voice authentication has also been explored [35].
While this technology can combine biometrics (i.e., voice recog-
nition, something you are) with passwords (i.e., something you
know), it requires users to speak content out loud, something that
may not always be appropriate or comfortable, irrespective of its
level of security.

Other authors have proposed taking advantage of private nature
of smart glass displays to support shoulder-surfing resistant PIN
entry techniques on both mobiles [32] and standalone glasses [4].
The essence of the idea is that private content on eyewear can
be used to modulate or transform publicly observable input such
that the entered data cannot be used to reconstruct the password.
Authors have explored this idea using touches on the screen of a
mobile [32] or (via thermal finger tracking) an arbitrary object [9]
as well as via strokes on glasses’ touchpads and spoken words [4].
The most common approach in this work is to create (and show
on the glasses) a new input-symbol to password-item mapping for
every password item entered. In this way, authors separate the
observable input from the entered password contents, typically at
the cost of raising cognitive complexity and reducing input speed.
Regardless, this work highlights the potential of private displays to
improve password entry systems.

A final approach to authentication on smart glasses is biometric.
This includes vision-based techniques based on traditional tech-
niques such as iris recognition and behavioral ones derived from
properties such as changes in pupil size [28] or data derived from
head movement patterns in response to musical cues [15]. While
biometrics bring many advantages, physical biometrics typically
require dedicated sensing hardware and behavioral biometrics can
be slow - Li et al.s’ head movement based system [15] performs
best after prolonged input of over ten seconds. Furthermore, prob-
lems with reliability over time and across a broad range of input
scenarios typically means traditional passwords serve as a backup
to biometric authentication - the use of biometrics does not re-
duce the need for passwords, just lowers the frequency with which

they are entered, placing more emphasis on qualities such as the
memorability.

A wide variety of novel touch-based authentication mechanisms
have also been proposed for other device form factors, such as mo-
bile phones. For example, Azenkot et al. [3] proposed a ten-symbol
system based on multi-finger chord input designed to facilitate
secure authentication by visually impaired users. This system uses
the hand-sized touch surface available on a mobile phone to encode
a password with spatial patterns of input. Studies suggest it has
comparable entropy to standard numeric PINs, while improving
on authentication input time for its target visually impaired user
group. In the area of touch biometrics [14], authors seek to combine
explicit user input, such as button selections, with data about how
touches are performed in order to increase confidence about the
identity of a user. De Luca et al. [6] describe a representative project
that combines data about the start and end points of strokes made
on the screen of on a mobile phone screen with time sequence data
captured during their performance. They show that combining this
data can help to reliably identify users.

2.2 Input on Wearables
There is also a thriving research community designing and eval-
uating novel input systems for smart glasses. A key focus is on
improving input on touch surfaces integrated into glasses. Much of
the work in this area has focused on the demanding topic of text
entry. For example, SwipeZone [11] divides the side-mounted touch
pad on Google Glass into three zones. Taps and vertical swipes in
each zone provide a total of nine possible rapidly executable inputs
(mean 150ms) that can be used to control a T9 text entry system
capable of achieving 8.73 WPMwith a 6% error rate. Similarly, Yu et
al. [36] present one-dimensional handwriting, a Google Glass text
entry system based on 26 unique forward-backward strokes that
achieves between 4.67 WPM (character level) and 19.6 WPM (word
level, expert use); mean on-screen gesturing time for individual
strokes was reported to be 504ms. Gugenheimer et al. [12] provide a
more general study of the value of on-headset touch input through
studies cataloging and comparing, among other things, speed and
accuracy on sensor surfaces mounted on both the side and front of
a VR headset. Their data indicates input is relatively rapid ( 1500ms)
and accurate (2%-6%), with input on the side of the device incurring
a performance hit due to the touch surface being offset from the
displayed VR contents.

Another common approach to touch input on glasses is to design
novel controllers and integrate them into or onto other body loca-
tions. For example, Dobbelstein et al. [7] propose a touch sensitive
belt to control an AR display and report on social acceptability of
using such a system - quick touches (2-4 seconds) are acceptable
on most of the device surface but more sustained contact should
be restricted to the areas above the front trouser pockets. Wang et
al. [26] describe a typing system involving superimposing a key-
board over the palm and fingers of one hand and making selections
with the index finger of the other. With a high-end tracking sys-
tem a WPM of up to 7.66 can be achieved; with an IR based wrist
mounted tracker this drops to 4.6. Finally, Ahn et al. [1] study the
use of a modified smartwatch as an input system for glasses in a
typing task. They report that WPM of up to 10.8 can be achieved in
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Figure 1: GlassPass prototype. PCBdivided into two touch ar-
eas by a centrally positioned raised plastic ridge (A). Finger
touching the sensors as trials are shown on screen of Epson
Moverio BT-200 glass (B). The prototype mounted on smart
glasses (C) and the touchpad sensors connected with an Ar-
duino Mega 2560 (D).

optimal conditions. Gestures are also a staple of AR input systems
and numerous systems have been proposed exploring the design or
implementation of hand [25] or foot [16] gestures using techniques
such as visual tracking or through dedicated sensing hardware in
wearables such as gloves [13]. An issue underlying much of this
work is the social acceptability of gestural input.

Tapping gestures have also been previously explored on wear-
ables. The Beats system [17] for smartwatches presents a system of
sequential and/or simultaneous finger tapping gestures and charac-
terizes time for distinguishing between these inputs. This concept
and the timing threshold influenced the design of the tapping ges-
ture set proposed in this paper.

3 GLASSPASS HARDWARE PROTOTYPE
In order to explore tapping and touch gestures on smart glasses,
we opted to construct a bespoke touch sensor for a pair of Epson
Moverio BT-200 AR glasses. This was due to the relatively large dis-
play (23◦) available on this platform and the fact that we wanted to
sense not only touches, but also the size or shape of those touches.
The sensor is shown Figure 1(B) and 1(C). It features six capacitive
electrodes arranged in a two by three grid on a custom PCB con-
nected to a Sparkfun MPR121 breakout board and interfaced via
a cable to an Arduino. The top and bottom electrodes of the PCB
were in similar size (height 3.5 mm) while the middle electrodes
were larger (10 mm). All electrodes were 16mm wide. A raised
1.5 mm thick spacer separated the left and right blocks. The goal
of this arrangement was to reliably sense touches to the left and
right columns, and also to distinguish between taps made with the
finger-tip and those made with the flat of the finger. To achieve
this, the spacing of the sensors was designed for a finger-tip tap to
come into contact with at most two electrodes and a finger flat tap
to touch all three (see Figure 1(C)).

	

LR	Dual	Tap(LRDT) 
  

RL	Seq.	Tap	(RLST) 

Left	(L)	Tap(LT) 
Right	(R)	Tap(RT)	 

LR	Seq.	Tap(LRST)		 
LR	Dual	Flat(LRDF) 
  

RL	Seq.	Flat(RLSF) 

Left	(L)	Flat(LF) 
Right	(R)	Flat(RF)	 

LR	Seq.	Flat(LRSF)		 

Figure 2: Designed ten gestures, five fingertip taps (A), five
finger flat taps gestures (B) and the gesture making process
(C).

The sensor unit fit inside a 64 mm by 25.5 mm by 8 mm 3D
printed case. The area immediately to the left and right of the PCB
was covered by a rough textured rubber to provide tactile cues to
distinguish between the touch area and its surrounds and support
eyes-free use. All graphical contents in the studies were displayed
on the Android Epson Moverio BT-200 eyewear.

4 STUDY-1: USER VALIDATION STUDY
This initial study was designed to assess system reliability and the
speed and accuracy with which participant were able to enter tap-
ping gestures on its surface. For this study, we designed a set of ten
gestures, illustrated in Figure 2. Five gestures used finger-tip taps
and five used finger-flat taps. Each subset of five was composed
of the following mixture of left and right inputs (corresponding to
taps made with the index and middle fingers): a single tap with the
index finger; a single tap with the middle finger; a simultaneous
tap with both fingers; a sequential tap of index followed by middle
finger and; a sequential tap of middle followed by index finger. To
register the sequential touches, the first finger needed to remain
on the sensor until the second finger makes contact. This struc-
ture effectively disambiguates sequential touches from sequences
of single touches. The timing threshold to differentiate between
simultaneous and sequential touches was 30ms [17].

The study had a simple, single condition structure. It was com-
posed of three sessions, each featuring 15 repetitions of the ten
gestures delivered in a random order. The first session was treated
as practice and not analyzed. In each trial participants were first re-
quested to tap the sensor to start. A fixation spot was then presented
until one second after participants released the sensor, followed
by one of the symbols from Figure 2. The user was then required
to enter the corresponding symbol and received feedback as to
correctness (a red cross or green tick) after releasing the sensor.
Participants were required to repeat erroneously completed ges-
tures. We logged the start and end time of each touch to the sensor
as well as the error rate. We defined the trial touch time as the total
duration of time any finger was in contact with the sensor.

The experiment was conducted in a quiet office room with par-
ticipants seated in front of a desk on a height adjustable chair.
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Figure 3: Mean touch time and errors from the ten different
taps in the validation study. Bars show standard error.

Participants rested their right elbow on the experiment table to aid
in keeping their fingers in a comfortable position over the touch
sensor. Nine right-handed participants (4 female) with a mean age
of 24 years participated in the study. Participants were recruited
from an on-line university social media group. All the participants
were either undergraduate or graduate students at UNIST with
high smartphone and touchscreen experience (4.3/5) but low smart
eyewear experience (1.2/5). The validation experiment took about
30 minutes and participants were compensated with approximately
10 USD.

4.1 Results
The mean touch time for all gestures was 319ms. This data is broken
down by gesture in Figure 3. A one way repeated measure ANOVA,
incorporating Greenhouse-Geisser corrections and treating gesture
as an independent variable confirmed that touch times differed
significantly among the gestures (F(1, 8)=176.529, p<0.001). This is
not surprising: some of the gestures involved simple single taps,
while others involved compound movements of two fingers. Due
to this fact and as we had no specific hypotheses about the differ-
ences between the different gestures, we opted not to run post-hoc
tests on this data; the chart clearly illustrates that time increases
with input complexity. We note that mean performance of this set
is relatively high. For example, in their discussion of the stroke
based gesture set for One-Dimensional Handwriting, Yu et al. [36],
report a mean gesture time (corresponding to our touch time) of
504ms. Our symbol set is able to improve on this considerably, most
likely because of its smaller cardinality: a smaller range of possible
inputs let us select simpler primitives that can be more rapidly per-
formed. Error data are shown in Figure 3; the mean is 6.6%. Another
RM ANOVA revealed a significant trend (F(1, 8) = 19.780, p=0.002).
As differences were less clear, we ran post-hoc t-tests incorporat-
ing Bonferroni corrections to identify specific differences; none
attained significance. As such, we conclude that although the 10
tapping gestures represent movements of differing complexity (that
take different amount of times to execute), all can be performed
sufficiently reliably to form part of a password entry symbol set.

5 STUDY-2: PASSWORD STUDY
Encouraged by the results of the validation study, we conducted
a more substantial evaluation of the use of the tapping symbol
set as passwords. We created a simple password creation system

Figure 4: Feedback in password entry bars in study 2. (A)
shows standard feedback condition: user input is marked
by black highlights for each password item entered. (B)
shows disclosed condition: as users input their password the
symbols are displayed on the private glasses display(B). (A)
shows password bar after a single entry, while (B) shows bar
after three entries.

on a PC that allowed users to choose (or be assigned) a tapping
password and altered the software on the Epson glasses to support
the entry of a password composed of four consecutive password
items delimited by sensor releases. We then evaluated performance
with this system against two binary variables: password-type, re-
ferring to whether participants chose their own passwords or had
a password assigned by the experimenters, and feedback, related
to the type of cues displayed on the private glasses display. We
investigated the difference between assigned and chosen passwords
to understand if there were biases in users’ password selection
processes and to determine whether or not self-selected passwords
were more memorable than assigned ones. Prior work has used
similar approaches to investigate password memorability and se-
curity issues by contrasting user generated and system-assigned
passwords [2, 8, 22, 23, 33]. The symbols in the assigned passwords
were balanced such that they, on aggregate, covered the entire sym-
bol set equally. Specifically, the 12 participants who were assigned
passwords required a total of 48 symbols - eight of the GlassPass
symbols was used ten times, with the remaining two used four
times. Beyond this constraint, symbol assignment to passwords
was random.

We defined two systems for the feedback variable: a standard
password entry feedback bar in which each additional entered
character is marked with a highlight (see Figure 4(A)) and a disclosed
version of this feedback in which the entered symbols are visually
displayed as they are input (see Figure 4(B)). We argue the disclosed
system is secure as the glasses display is private and not susceptible
to attacks such as in-person or camera based shoulder surfing [32].
The motivation for including the disclosed feedback is to facilitate
memorization and recall of the password through visual exposure
to a representation of its contents. In a password composed of an
unusual symbol set of taps, we believe this kind of memory aid
could help alleviate problems with password recall.

5.1 Experimental Description and Design
Twenty-four right-handed participants (13 female, mean age 25)
participated in the password study. The study followed a between
groups design with six participants per group and each group com-
pleting one of the four conditions. Each participant finished two
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sessions: a full study of the password entry system and a brief mem-
orability session one week later. Participants were compensated
with 15 USD in local currency for the first session and 10 USD for
the second. No participant dropped out between the two sessions.

The password study started with a familiarization session. An
experimenter first demonstrated the ten input symbols. Participants
then completed a short session of 15 repetitions of the ten sym-
bols delivered in a random order. This was to gain familiarity with
the input system. The password study then began with the par-
ticipant creating or being assigned a password, depending on the
experimental condition. This password was used for the participant
throughout the remainder of the study. There were then six input
sessions, each including ten repetitions of full entry of the partici-
pant’s four-item password. The first two sessions were considered
practice and discarded. The remaining four sessions (40 trials) were
retained for analysis. This resulted in a data set of 24*40*4 = 3840
individual password symbol entries. At the end of each of the six
sessions, participants were encouraged to rest for as long as they
wanted. In this study, we measured password entry time, defined as
the full time it took to enter a four-item password. Incorrect trials
were also logged at the password level (e.g. one erroneous symbol
corresponds to an erroneous password) and subjective workload
was measured via the NASA TLX.

Immediately after completing the password study we assessed
short-term password memorability. Participants first played a card
matching game on a mobile device for five minutes to occupy their
working memory. They then entered their password again, follow-
ing the common protocol of being given three chances [2] to enter
it correctly. The follow-up memorability session was conducted one
week after the main study. This is a time interval commonly used
in authentication studies assessing memorability [2, 22]. The study
took the same form: participants donned the glasses and had three
chances to enter their password. In order to reduce the chances that
participants would adopt strategies such as noting down passwords
immediately after the first study, we provided no information about
the nature of the follow up session during the first session.

5.2 Results
All analyses, unless otherwise mentioned, were two-way ANOVAs.
Error rates are shown in Figure 5(C). Neither the interaction (F (1,
20) = 1.25, p>0.05) nor the main effects of password-type (F (1, 20) =
1.25, p>0.05) or feedback (F (1, 20) = 1.25, p>0.05) led to significant
differences. Examining the raw data, it shows a clear uniform trend.
Consequently, we can conclude that assigned passwords, with their
more diverse symbol set, are as reliable to enter as chosen ones.
Password entry time data are shown in Figure 5(B). The ANOVA on
password entry time also showed no significant interaction (F (1, 20)
= 0.23, p>0.05) nor main effect of feedback (F (1, 20) = 0.006, p>0.05).
However, the password-type variable attained significance (F (1, 20)
= 5.198, p<0.05) indicating that users entered their passwords more
quickly if they had chosen the password themselves. This likely
reflects the composition of symbols in the passwords and reflects a
propensity for users to select password symbols they believe are
simpler and quicker to enter. We discuss this issue in more detail
in section 6.

Figure 5: Mean password entry time, errors, and TLX subjec-
tive data from the four conditions of password study. Bars
show standard error.

Workload data are presented in Figure 5(A). Given the high
variance and proximate means in this data set, we opted not to
conduct a factor by factor analysis. Instead, we calculated overall
workload and tested for differences on this aggregate score. There
are no significant differences in the interaction (F (1, 20) = 1.67,
p>0.05) or main effects of password-type (F (1, 20) = 0.05, p>0.05)
and feedback (F (1, 20) = 0.04, p>0.05). This suggests that neither
the presence or absence of feedback, nor the requirement to use
a created or assigned password had a measurable impact on the
workload experienced in the study.

We made two assessments of password memorability. The first
took place immediate after participants completed the training
study and a distracter task intended to occupy their working mem-
ory so they would not be able to continuously attend to their pass-
word contents. The second took place in a follow-up study session
one week after the main study. We were careful not to forewarn
participants as to the purpose of the second study to prevent be-
haviors such as noting down or otherwise working to thoroughly
memorize their passwords. In the initial memorability assessment,
two participants in the chosen-standard condition failed to enter
their passwords at the first attempt. Both succeeded on the second
attempt. While these errors may represent failures of memory, they
could also be attributed to data input errors - two failures from 24
participants would amount to an 8.3% error rate, roughly consistent
with the error rate recorded in the study as a whole.

Results from the session one week later are more conclusive.
Two participants from the chosen-standard and two participants
from the assigned-standard groups entirely failed to enter their
passwords on all three attempts. All reported not being able to
remember their passwords. In both of the disclosed conditions,
however, all participants correctly entered their passwords at the
first attempt. Although this evidence is from a relatively small



AH2018, February 7–9, 2018, Seoul, Republic of Korea MD. Rasel Islam et al.

Figure 6: Symbol frequency ratios (%) used by participants
in the chosen password condition. The four single taps were
used 24 times (50%), the two dual taps were used 13 times
(27.08%) and the four sequential taps were used 11 times
(22.92%).

participant pool, it is sufficiently strong (1/3 of participants in the
standard condition failed to remember their passwords vs none
in the disclosed condition) to suggest that there are benefits to
using a private display to provide password hints in the form of a
visualization of entered input.

At the end of both study sessions, participants were given the
opportunity to present their comments and opinions about the
system. Comments from those in the disclosed conditions support
our assertion that the feedback was valuable. In a representative
statement, P16 remarked that having the symbols on screen was an
effective memory aid. Participants were more split about the mem-
orability of the tapping gesture set in general. Some participants
reported that the rhythmic qualities of the interaction made it easy
to remember the password (their "fingers remembered" (P9)) while
others found the symbols abstract: "[flat] gestures are difficult to
remember" (P21) and "confusing" (P18).

6 GLASSPASS SECURITY
This section explores the security of the GlassPass in terms of the
strength of the passwords participants generated. In this analysis,
we consider only the 12 users in the chosen group. Figure 6 shows
the frequency of GlassPass symbols selected, showing a tendency
to choose single or dual taps over other symbols. Conversely, se-
quential taps were used much more infrequently - the four possible
inputs were selected just 23% of the time. Figure 7 breaks down this
data into the inputs used for each item in the password showing the
preference for single taps is particularly prevalent when choosing
the first input in a GlassPass password - 60% of first items were
single taps. In subsequent password items, distributions were more
even, although participants still under-used sequential taps. This
suggests that password policies would be required to encourage
users to deploy sequential taps in order to ensure that GlassPass
passwords are resistant against informed brute force or guessing
attacks.

We also analyzed the generated password to determine if the
use of repeated symbols (e.g. 1122 in a numeric PIN) was common.
These types of repetition weaken the security of passwords by in-
creasing guess-ability based on rule-based attacks. We examined

Figure 7: Frequency of each type of tap (single, dual and se-
quential) used in each password item (first through fourth).

repetition in the following six patterns, where "X" denotes a re-
peated item and "?" any other item: XX??, X?X?, X??X, ?XX?, ?X?X,
??XX. Surprisingly, just one password contained a single incidence
of repetition (in the format XX??), suggesting that GlassPass would
be resilient to attacks that seek to exploit rule based repetition. We
suggest this may be due to the fact that GlassPass input is non-
numeric and non-lexical. As it is not anchored on an established
alphabet, participants saw few benefits in using repetition to help
them learn, remember or produce their passwords.

7 DISCUSSION
Performance with the GlassPass system was generally high: pass-
words were entered rapidly (2300ms) and with an acceptable relia-
bility of 95%. This offers improvements over prior entry systems
for eyewear that focus on stroke gestures rather than tapping ges-
tures [11]. Specifically, our system is 2.43 times as fast as entry
times reported for the standard stroke authentication that shipped
on the Google Glass - Yadav et al. report this to be 5589ms [35].
Furthermore, the password entry times are relatively close to the
standard times for regular four-digit PIN entry on a numerical key-
board - typically reported to be in the 1-2 second range [32]. As
such high performance is the result of consistent practice, we find
it highly encouraging that the tapping gesture set in this paper
can approach this level of input efficiency. As such, we believe our
study supports the use of tapping gestures for eyewear in situations
where there are a limited number of possible symbols in the input
set.

It is worth further contrasting performancewithGlassPass against
alternative input systems and approaches to authentication on
smart glasses. In terms of behavioral biometrics, Li et al. [15] report
an Equal Error Rate (EER) of 4.43% after 10 seconds of motion input.
In GlassUnlock [32], where the glass display is used to present
content that obfuscates the meaning of physical input on a phone,
entry times are 4.8 to 4.9 seconds with a mean accuracy of 5.22%.
The authors partly attribute the protracted entry times to the re-
quirement for repeated shifts of visual attention from glasses to
phone. Finally, data from studies of FaceTouch [12] suggest that
while blind target selections on the side of a device are highly inac-
curate (error rate of 64% for select on finger down), performance
improves to 4% if users are allowed to adjust targeting interactively
before selecting on release. We again highlight that GlassPass offers
performance improvements over these approaches in terms of its
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speed (2300ms) and/or error rate (5%). We attribute these advan-
tages to GlassPass’s focus on eyes-free input that is specifically
designed for rapid performance on small touchpads.

We also argue that GlassPass presents benefits in terms of pass-
word memorability. Although the evaluation is limited in scope to
a single longitudinal assessment, the results support the idea that
the private displays of smart glasses can be used to aid in secure
password memorization though the simple approach of displaying
entered symbols. This recommendation has the benefit of being
trivial to implement in current systems (requiring only a software
update) and is applicable to any type of password system, including
those based on traditional alphanumeric characters. We argue that
password forgetting is a major problem [29] that a simple aid such
as persistently displaying feedback about entered information can
help address.

GlassPass has a number of limitations. One potential problem
is its reliance on capturing the shape of finger contact regions.
While this is an established (e.g., [18, 20, 21, 24, 27, 31]) form of
input in the research community, it is one that remains relatively
uncommon in current consumer devices. However, given that recent
research is implementing shape detection functionality by hacking
the software on consumer wearables such as watches [10, 34], we
believe that it is realistic to expect that future glass systems will be
able to capture the kind of touch data required for GlassPass input. A
related issue is the relatively large size of the GlassPass touch input
system.While its horizontal length is similar to commercial systems
such as Google Glass (76.2mm long), it is relatively large vertically
(18mm compared to 10.4). Further work is required to investigate if
the GlassPass input technique is effective on smaller touch surfaces
that might bemore practically integrated into eyewear. Additionally,
although we present an analysis of the how users select password
items to examine if biases are present, the sample size of the current
study makes this speculative and inconclusive; a larger scale study
would need to study this issue in more depth. Finally, there are a
number of common threat models that GlassPass does not consider.
Perhaps the most prominent of these is observation - either by
shoulder surfing or via camera. Future work will seek to adapt
GlassPass to incorporate input mappings that leverage the personal
glass screen to obfuscate observable physical inputs to improve
resistance to attacks of this form [32].

8 CONCLUSIONS
In conclusion, we believe that next generation smart eyewear will
store, show and manipulate all sorts of sensitive user information.
Securing access to these devices is therefore important. However,
to ensure that users opt to deploy security measures, research is
needed to create systems that appropriately combine security with
usability. GlassPass achieves this in several critical ways. Firstly, it
maintains the entropy, or available password space, of a standard
ATM PIN. Secondly, it supports rapid and reliable input. Thirdly, it
integrates a simple technique to increase password memorability.
We believe techniques such as GlassPass can be directly integrated
into next generation smart glasses.
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