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Figure 1: Overview of SonarID: during a screen touch by the thumb, index, or middle fnger, a speaker on one side of a smart-
watch emits an ultrasonic sonar signal (a Zadof-Chu (ZC) sequence, modulated over a carrier wave) and a microphone on the 
other side receives it. The signal is demodulated and processed to create a sonar fngerprint: a time-varying image, composed 
of nSeqs ZC sequences, each trimmed to nSamples in length, of the impulse response to the signal during the touch. A deep 
learning model processes this data to identify which fnger performed the touch. 

ABSTRACT 
The diminutive size of wrist wearables has prompted the design 
of many novel input techniques to increase expressivity. Finger 
identifcation, or assigning diferent functionality to diferent fn-
gers, has been frequently proposed. However, while the value of 
the technique seems clear, its implementation remains challenging, 
often relying on external devices (e.g., worn magnets) or explicit in-
structions. Addressing these limitations, this paper explores a novel 
approach to natural and unencumbered fnger identifcation on an 
unmodifed smartwatch: sonar. To do this, we adapt an existing 
fnger tracking smartphone sonar implementation—rather than ex-
tract fnger motion, we process raw sonar fngerprints representing 
the complete sonar scene recorded during a touch. We capture data 
from 16 participants operating a smartwatch and use their sonar 
fngerprints to train a deep learning recognizer that identifes taps 
by the thumb, index, and middle fngers with an accuracy of up to 
93.7%, sufcient to support meaningful application development. 

CCS CONCEPTS 
• Human-centered computing → Pointing; Sound-based input 
/ output; Touch screens. 
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1 INTRODUCTION 
Smartwatches are increasingly powerful personal computers capa-
ble of a wide range of advanced functions such as tracking health 
status [22], physiological signals [10] and motor behaviors [9], me-
diating fnancial transactions [19], displaying messages and notifca-
tions [38], and supporting scheduling and navigation activities [29]. 
Their small size (typically in the order of 3cm by 3cm) limits the ex-
pressiveness of conventional touch screen input techniques—there 
is limited space to present and select on-screen targets and the 
fat-fnger problem [32] means that much of the watch screen is 
obscured during interaction. To address these issues, a very wide 
body of research has sought to extend the input capabilities of 
smartwatches through techniques such as around-device interac-
tion [2, 21], fnger gesture sensing [41, 43], or augmenting the 
screen to detect additional touch properties such as pressure [14], 
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contact area [27], the spatial [16] or temporal patterns of multiple 
touches [26], or the ability to distinguish between touching fn-
gers [28]. In this latter approach, diferent functions have been as-
signed to each digit to support both general target selection tasks [4] 
and also the skilled performance of high bandwidth activities such 
as typing [8]. Authors have argued the modality is a good ft for the 
smartwatch form factor: it can be readily understood [4] and per-
formed [8] and is rich enough to support a wide range of interaction 
techniques [28]. 

While the potential of fnger identifcation is clear, practical, 
efective implementations remain challenging. In 2016, Gupta and 
Balakrishnan [8] argued there were no viable implementations for a 
smartwatch form factor and constructed their own prototype using 
forward-facing optical distance sensors mounted on the nails of 
both index and ring fngers—during a watch touch, the touching fn-
ger was identifed as the one recording a nearby surface. However, 
while suitable for supporting empirical and design work, mount-
ing active electronic components on the fngers is impractical and 
cumbersome. The situation has improved, but reliable fnger identi-
fcation performance is still reliant on additional worn hardware. 
MagTouch [28], for example, requires a user to wear a magnetic 
ring on their middle fnger. The position of the ring is tracked by the 
smartwatch’s magnetometer to establish the relationship between 
the hand and the watch and support fnger identifcation (among 
index, middle, and ring fngers) during both touching and hovering 
events with a high level of accuracy (95.03%). However, the require-
ment to wear an additional device (albeit a passive ring, rather than 
an electronic device) in order to enable fnger identifcation is un-
desirable and limits the practicality of the technique. To deal with 
this issue, other authors have proposed systems that do not require 
additional hardware. TriTap [4], for example, used the “capacitive 
image” [17] of each touch to infer the touching fnger, a technique 
that achieved high levels of performance for three fngers when 
participants adopted specifc, somewhat artifcial, predefned touch-
ing poses (98%), and a reduced level of performance with natural 
unconstrained touches (79.4%). These articles illustrate a trade-of: 
the benefts of an implementation that requires no additional hard-
ware, or places no limitations on how touches are performed, are 
ofset by the costs of reduced fnger identifcation accuracy. 

This paper explores a novel approach to fnger identifcation: 
sonar. This modality requires no additional hardware and has the 
ability to detect the fngers above a smartwatch, potentially support-
ing hover input in addition to touch. Refecting these advantages, 
sonar has been previously proposed as a technique for around-
device interaction on a smartwatch. FingerIO [25] presented a 
watch-based sonar system that tracks fnger movements to sup-
port gestural or pointing input adjacent to a device. An extensive 
body of literature has also explored sonar on smartphones in tasks 
as diverse as phone grip pose identifcation [15], back of device 
input [36], breathing detection [33] and health monitoring [24]. 
While the smartphone literature is quite mature, the smartwatch 
literature is relatively limited, and we are not aware of prior work 
applying sonar to identify touching fngers in any context. We seek 
to fll this gap by presenting a sonar implementation for an of-the-
shelf smartwatch and a study that captures the sonar fngerprints 
generated by smartwatch touches. We use these images to construct 

deep learning models that are able to correctly identify the touching 
fnger with an accuracy of 93.7%. 

The contributions of this paper are a sonar implementation for 
an of-the-shelf smartwatch, a study capturing sonar fngerprints 
during touch input tasks, and a description of deep learning models 
that are capable of using these images to reliably and accurately 
recognize touching fngers. These data and results indicate that 
sonar is a promising and efective technique for developing fnger 
identifcation input systems for smartwatches that do not require 
modifcation of existing devices nor rely on users physically instru-
menting their touching fngers. 

2 RELATED WORK 
Finger identifcation have been frequently proposed [30] or evalu-
ated [6] as a mechanism for increasing the expressivity of user in-
teraction on platforms as diverse as tabletop computers [11], smart-
phones [17] and smartwatches [4, 28]. The core design concept 
involves assigning diferent functions to diferent fngers [35, 44], 
or sets of fngers [6], a technique that has been demonstrated to 
be useful in domains as varied as text-entry (by assigning diferent 
letters to diferent fngers) [8] through multi-tasking (by routing in-
put from diferent fngers to diferent applications) [7] to command 
specifcation in text editing (such as assigning diferent fngers to 
copy and paste) [5]. We argue it holds particular value for small 
devices such as smartwatches. 

Finger identifcation can be implemented via numerous tech-
nologies. One approach is to enhance the touch screen, such as 
by making it capable of detecting fngerprints [12]. Another is to 
use external sensors, such as a depth camera [34], or a standard 
camera plus fnger-worn visual markers [5, 39]. Other approaches 
instrument the fngers more invasively, for example, by mount-
ing infrared [3, 23] or vibration [20] sensors on each digit. While 
these approaches can perform well, they are unsuitable for a real 
world smartwatch scenario: the small size of watch format de-
vices precludes integration of advanced (and large) touch screen 
functionality, and wearing additional sensors on the body (e.g., 
cameras) or fngers is both impractical and undesirable. More prac-
tical approaches either use passive fnger instrumentation such as 
a magnetic ring to track fngers [28] or derive data from the de-
tailed analysis of the touch shapes generated by diferent fngers [4]. 
While these approaches show promise, both have limitations. Fin-
ger fexion can disrupt ring-based magnetic tracking systems [1], 
and efective performance using touchscreen data is reported to 
require the adoption of specifc and somewhat artifcial poses. In 
order to enable the full potential of the fnger identifcation input 
modality on wearables, further research on the sensing techniques 
that can efectively enable it is currently required. 

Sonar is one promising modality for this purpose. Sonar can be 
implemented using the speakers and microphones built in to smart 
devices and does not require instrumentation of the touching fn-
gers. On mobile phones, it is well established as an input modality 
capable of supporting functionality as diverse as the back of device 
fnger tracking [36], mid-air gestures [40], freehand writing [42] 
and breathing monitoring [33]. In order to enable this functionality, 
authors have typically relied on signals from multiple microphones 
and sought to isolate and track hand or body motion at specifc 
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Figure 2: Examples of the sonar fngerprints, or impulse response estimations, generated during periodic smartwatch taps by 
each fnger. Top-left shows no tapping, top-right thumb taps, bottom-left index fnger taps, and bottom-right middle fnger 
taps. Finger touches are marked under the axes on each chart. In order to facilitate visual inspection, chart x-axes have diferent 
scales (to present taps at the same spatial interval) and y-axes show only half of the auto-correlated signal. 

distances and frequencies of interest using approaches such as 
Orthogonal Frequency Division Multiplexing (OFDM) [25], phase 
changes in response to multiple continuous waves [40] and impulse 
response estimation via auto-correlation [36]. A multiple micro-
phone prototype in a smartwatch form factor has also shown the 
potential of the technique for wearables [25]. However, we know 
of no sonar implementations for a commercial smartwatch, none 
that target fnger identifcation, and few that rely on data from a 
single microphone [37]—the hardware confguration available in 
current watches. The work in this paper seeks to address these 
omissions and provide insight into the potential of sonar to support 
fnger identifcation using a single microphone on an of-the-shelf 
smartwatch. 

3 SYSTEM 
We implemented SonarID on an unmodifed Samsung Galaxy Watch 
Active 2 smartwatch running Tizen. This device features a speaker 
on the left side, a microphone on the right side, and is capable of 
simultaneously playing and recording 48kHz 16 bit PCM audio. 
To develop our system, we selected a previously proposed sonar 
signal: a Zadof-Chu (ZC) sequence (length 127, u = 63, up-sampled 
to 1024 data points) modulated into a 6kHz band over a 20.25 kHz 
carrier wave [36]. This signal has a number of benefcial properties. 
It is, by and large, inaudible. It is brief—just 21.3ms in length—and 
thus relatively responsive to rapid change (46.95 cycles per second). 
In addition, it has good auto-correlation properties (i.e., a narrow 
main lobe and highly attenuated side-lobes) meaning a simple auto-
correlation can be used to estimate the impulse response of the 
signal and distinguish between peaks generated by multiple tempo-
rally proximate sonar refections. It is reported to achieve a spatial 
accuracy of as low as 3.59mm in the task of tracking index fnger 
location on the back of a smartphone [36]. This demonstrates its 
suitability for use in interactive systems involving close proximity 
between a user’s hands and sonar sources and receivers. Although 
prior research has demonstrated the benefcial properties of this sig-
nal, we know of no work that has examined its use on a smartwatch, 
nor in a pose recognition task such as fnger identifcation. 

To perform fnger identifcation, our system emits a looping ZC 
sequence. After a touch occurs, it segments a window of audio 
around that touch, demodulates the ZC signal, and cyclically es-
timates its impulse response by performing an auto-correlation 
against the original 1024 sample ZC sequence data on windows 
that are 512 samples (10.65ms) apart; this simple manipulation ef-
fectively up-samples the sonar measurements we take from 46.95 
per second to 93.9 per second [36]. We then generate an image 
from multiple auto-correlation windows that depicts the chang-
ing sonar fngerprint (or impulse response pattern) during a touch. 
We calibrate the image to focus on the near distance by tracking 
the largest peak in the impulse response estimations, which is in-
evitably due to a combination of through-device and direct in-air 
audio transmission. Based on this calibration, we trim the sequence 
to limit our analysis to sonar refections from predefned ranges. 
We refer to the two variables in this process as nSeqs, or the number 
of impulse estimations we make, and nSamples, or the number of 
samples from each impulse estimation that we retain. This former 
variable relates to the amount of data we analyze (e.g., the size of 
the temporal window used), while the latter measure corresponds 
to the maximum distance of the sonar refections we consider. Fig-
ure 1 illustrates the main steps involved in this processing pipeline. 
Additionally, all code, scripts, and models in our system are open 
sources and available for download1. 

Figure 2 shows examples of data recorded using this system 
for no input and for a sequence of three periodic taps with the 
thumb, index fnger, and middle fnger made by a single user. Visual 
examination of these images suggests that the sonar fngerprints 
generated by these diferent events are sufciently unique to sup-
port accurate fnger classifcation. All images show a strong im-
mediate response, representing the direct audio path. Index fnger 
taps show limited additional refections, while thumb and middle 
fnger taps both present stronger proximate (5 to 10 cm) signal 
peaks, and distinctive sets of more distant refections. In addition, 
the relatively complex, time varying nature of patterns suggests 
that approaches to processing the images based on identifying, 

1https://github.com/kjwan4435/SonarID 

https://1https://github.com/kjwan4435/SonarID


CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Jiwan Kim and Ian Oakley 

Figure 3: Study interface and interaction. It shows target positions (a), the interface during a trial (b), the index fnger pose 
used for taps to start a trial and during the fxation period (c), and representative examples of diferent participants’ hand 
posture during thumb, index and middle fnger taps (d) 

segmenting, and tracking key signals (e.g., the location of a single 
object or fnger [36]) are poorly suited to the fnger identifcation 
task. We suggest this is because the key diferences in the signals 
recorded by our system represent the varying surfaces of the hand 
as it moves through the process of tapping the watch with diferent 
fngers. There is no single point of interest; rather, the informa-
tion is contained within the changing pattern of refections as a 
whole. Two key factors likely contribute to these changes: the gross 
movements of the hand over the watch as it brings the appropriate 
fnger to bear, and the variations in hand pose that touches with 
diferent fngers naturally entails—retracting, extending or holding 
the various fngers out. Accordingly, rather than try to identify key 
aspects of the signal, we argue that a more proftable approach will 
follow recent work in room-level sonar image reconstruction [37] 
and apply a deep learning approach to the raw sonar data—in our 
case, the impulse response images. The remainder of this paper 
seeks to explore these assertions and determine the viability of 
using sonar signals to classify the fnger touching a smartwatch. 

4 STUDY 
We conducted a study to collect sonar data from our system to 
support the development and evaluation of a deep learning clas-
sifer for fnger identifcation on a smartwatch. In addition, we 
collected user performance data to inform a characterization of 
user behaviors that can shed light on the cues a classifer could use 
to distinguish between touches by diferent fngers. The study was 
approved by the local IRB and fully complied with both national 
laws and institutional regulations related to social distancing. 

4.1 Participants 
Sixteen participants (9 male, all right-handed, mean age of 23.94 
(SD 2.32)) were recruited from the local university via online com-
munity channels. They were highly familiar with computers (4.93/5, 
SD 0.25) and smartphones (5/5) but relatively unfamiliar with smart-
watches (1.81/5, SD: 1.05). Their hands measured 20.23cm (SD 
1.42cm) in length (from base of hand to tip of middle fnger), and the 
mean length of thumb, index, and middle fngers were, respectively, 
5.81cm (SD 0.47), 7.09cm (SD 0.49) and 7.74cm (SD 0.48cm). The 
study took approximately an hour to complete, and each participant 
was compensated with approximately 13 USD in local currency. 

4.2 Design 
The study was designed around one key variable: fngers. We con-
sidered only three fngers, in line with prior work in this area [28]. 
We specifcally selected the thumb, index and middle, as these digits 

feature in closely related research studying unencumbered fnger 
identifcation on smartwatches [4] and are commonly used while 
interacting with pointing devices such as a mobile phone touch 
screen (thumb and index) or two button mouse (index and middle). 
In order to capture a range of touches, we laid out seven targets 
in a circular arrangement: one in the center, surrounded by the six 
others. Each target was 120 pixels (11.33 mm) in diameter, one-third 
of the smartwatch’s screen diameter of 34mm. We indicated which 
fnger to use for each screen touch with icons displayed directly 
on the target. Details of this interface are shown in Figure 3. In 
total, this arrangement led to 21 diferent trials, each with a unique 
fnger/target combination. We arranged these trials in four blocks, 
each featuring a randomly ordered set composed of fve repetitions 
of each possible trial. As such, the study captured data from 6720 
trials in total: seven targets by three fngers by fve repetitions by 
four blocks by 16 participants. 

For each trial in the study, we captured the following measures: 
movement-time, measured from the end of the fxation period until 
touch down over the target; touch-time, the duration the fnger 
was in contact with the screen; correctness, whether or not the 
appropriate target was selected and; raw audio. This was both 
emitted and captured from the start of the fxation period until 
500ms after the screen was released. In addition, we recorded videos 
of participants’ hands and watch throughout the study and asked 
them to self-report any erroneously completed (e.g., wrong fnger) 
trials they noted. We did not incorporate any further independent 
measures of the correctness of tapping fngers. Following prior 
work in this area [4], we relied on the simplicity of the study task 
to ensure that the vast majority of the study trials were completed 
correctly. 

4.3 Procedure 
The experiment took place in an empty classroom with participants 
seated in front of an empty desk. To prevent fatigue, they rested 
their wrist on the desk. Participants frst read the instructions and 
signed consent. They then donned the smartwatch on their left wrist 
and had a maximum of fve minutes to practice the three fnger 
touches (thumb, index, middle). They were instructed to determine 
the most comfortable and efective input actions for completing 
the study tasks—this was important as many participants were 
unfamiliar with both smartwatches and the use of either thumb or 
middle fnger to perform taps. This practice stage helped reduce 
variability in the study tasks as it allowed participants to experiment 
with diferent approaches to making the fnger taps. However, we 
note that we did not restrict participants’ hand, arm, or fnger 
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Figure 4: Study data showing movement-times (left), touch-times (center), and error counts (right) for touches with the thumb, 
index, and middle fngers. 

poses—they were free to tap the watch any way they felt was 
comfortable. After indicating they were ready, the study began. 
Each trial involved tapping the screen with the index fnger, then 
hovering over the watch for a fxation period (500ms), after which 
time the trial target and fnger were shown. The participant then 
tapped the target with the appropriate fnger, and the next trial 
began. Incomplete trials timed out after three seconds. Participants 
were able to rest at any time between trials, and there were three 
enforced breaks of two minutes, one between each of the four trial 
blocks. At the end of the study they completed demographics. 

4.4 Results 
We recorded a total of 6530 (97.17%) correctly completed trials and 
97 errors (1.44%) in which the on-screen target was not correctly 
tapped. In addition, we logged 30 errors (0.45%) in which partici-
pants self-reported erroneously tapping the screen (e.g., with the 
wrong fnger) and 63 errors (0.94%) in which technical problems 
led to data loss. We opted not to analyze self-reported errors due to 
their sparsity and technical errors due to their lack of relevance to 
user performance. Data for movement-time and touch-time from 
correctly completed trials, and trial error count, are shown in Fig-
ure 4. Movement- and touch-time data were normally distributed 
and upheld sphericity assumptions, so we analyzed them with one-
way repeated measures ANOVA on the fnger variable. Movement-
time led to a signifcant main efect (F (2, 15) = 123.578, p<0.001, 
η̂2 =0.493), while touch-time did not (F (2, 15) = 2.715, p=0.082, 
η 
G
2ˆ =0.043). Post-hoc t-tests on movement-time, incorporating Bon-G
ferroni corrections, indicated that taps with the index fnger were 
faster than with the thumb or middle fnger (both p<0.001). This 
suggests that thumb and middle fnger taps in our task both in-
volved additional hand movements prior to contact with the screen 
and that these motions exacted a modest, but stable, time cost of 
approximately 200ms. These motions are likely due to the fact that 
the index fnger was mandated for the taps used to start each trial. 
As prior work has indicated sonar sensing systems on smart de-
vices are highly sensitive to hand and fnger motion [36], we note 
these variations will also likely constitute a key feature that a clas-
sifer can use to distinguish between taps by diferent fngers, with 
thumb taps involving a descending rightward motion of the hand, 
index taps a simple downward motion and middle taps a descending 
leftward motion. 

We then examined errors. Error counts were not normally dis-
tributed; in fact, three participants contributed 51 (66%) of the errors, 

with numerous others achieving perfect or near-perfect perfor-
mance. Additionally, the vast majority of errors (92%) occurred on 
the middle row of targets—on the leftmost (23%), center (54%), or 
rightmost (15%) targets. Refecting the unevenness of this data, we 
analyzed error counts using a Friedman test on the fnger variable. 
It revealed signifcant diferences (χ2(2) = 5.848, p=0.008), which 
follow up Wilcoxon tests (applying an α level of 0.0167 to emu-
late Bonferroni correction) indicated were due to the index (Z=2.5, 
p=0.007) and middle (Z=4.0, p=0.011) fnger leading to fewer wrong 
target selections than the thumb. We conclude that although error 
rates in the study were generally low (at 1.44% in total), refecting 
the simplicity of the study task, there was a subset of participants 
who experienced some degree of challenge in the task of accurately 
thumb tapping buttons located in the center row of the watch screen. 
To support optimal performance for all users, targets intended for 
thumb tapping might therefore be better located at the top or bot-
tom of a smartwatch screen. We could not infer potential features 
that might support fnger classifcation from this data due, in part, 
to its sparsity. 

Finally, we took notes live and examined the study video record-
ings to informally catalog variations in participants’ performance 
of the three taps in the study. Index fnger taps were uniformly per-
formed simply with a single, isolated, outstretched digit. For thumb 
taps, performance was also quite uniform, with 14 participants 
opting to make a "V pose" with the thumb and index, with other 
fngers tucked into a loose fst. The remaining two participants 
(P10, P11) performed thumb taps after frst retracting their index 
fnger to join the others in their fsts. There was somewhat more 
diversity in middle fnger taps, with 11 participants making a "V 
pose" with index and middle, two participants extending the middle 
fnger alone (again, P10 and P11), and the remaining three (P2, P5, 
P12) extending all fngers, loosely splaying their hand, during a 
middle fnger tap. These poses are illustrated in Figure 3. While we 
expected the diversity of these user-selected poses to present chal-
lenges to our goal of developing a sonar based recognizer for fnger 
identifcation, the similarities among many participants’ input may 
also lead to generation of consistent classes of sonar refection. For 
most participants, thumb touches meant their hand was situated 
to the right of the watch, while index touches involved a single 
digit above the watch and middle touches led to the fngers or hand 
being on the left of (or covering) the watch. We suggest the pat-
terns of sonar refections generated by these diferent poses may 
be sufciently distinct to support reliable fnger classifcation. 
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Table 1: Accuracy (in %) for diferent sonar ranges, expressed 
in nSamples, the length of the ZC sequence used. nSeqs is set 
to 60/40. 

Signal Range Near Mid Far 
nSamples (#) 25 50 100 200 300 
Distance (cm) 4.5 9 18 36 54 
Accuracy (%) 86.06 89.43 91.73 93.26 93.72 

4.5 Preprocessing 
We processed the recorded sound for each trial according to the 
procedures set out in Section 3. In brief, the recorded ZC sequence 
data was demodulated from the carrier wave, then cyclically auto-
correlated with the original 1024 sample ZC sequence with a hop 
size of 512. Each of these auto-correlations yielded an estimate of the 
impulse response to the signal that encompasses refections from a 
maximum distance of approximately 368cm [36]. We concatenated 
a sequence of these estimations to form a sonar fngerprint—a time-
varying image representing the sonar refections recorded through-
out a touch. We defned two variables in this process: nSamples, 
referring to the number of samples used from each impulse response 
estimation, and nSeqs, referring to the number of estimations we 
concatenate. These correspond to, respectively, the physical range 
at which we capture sonar refections and the period of time in 
which we capture them. We explored the impact of varying the 
value of these parameters in a grid search procedure (see Tables 1 
and 2). In addition, Appendix A depicts representative examples 
of sonar fngerprints captured from diferent users for each of the 
three fnger touches. 

4.6 Classifer and Classifcation Performance 
We sought to identify the fngers involved in screen touches from 
our sonar fngerprints using a 2D convolution neural network (Con-
vNet) [18]. Due to the similarity between our data and traditional 
sonograms, we based our system on an existing design for detecting 
visual patterns in audio spectrograms [31]. To support feature learn-
ing, we selected a model composed of three convolution blocks, 
with each block containing a convolution, Rectifed Linear unit 
(ReLU) activation, and max-pooling layer. We consecutively in-
creased the number of flters (from 32 to 64 then 128) and used a 
3x3 kernel in the convolution layers, while we used a 2x2 kernel and 
a stride length of 2 in the max-pooling layers. After we fattened 
the output from the last convolution block, we included two fully 
connected hidden layers with, respectively, 1024 and 128 units. A 
fnal fully connected layer performed the multi-classifcation into 
thumb, index, or middle fnger classes. Figure 1 shows this structure. 

We frst constructed general models using data from all partici-
pants to explore the nSamples and nSeqs parameters via a grid search 
procedure. In this process, we used 80% of the data for training 
and reserved the remaining 20% for fnal testing. Using the training 
data set, we conducted fve-fold cross validation procedures. We 
selected values for nSamples to be between 25 to 300, encompassing 
refections from between 4.5 cm (single refections from the fnger) 
to 54 cm (multiple refections from the body, arm, hand and fn-
gers). We considered nSeqs values of between 20 and 100, specifying 
periods with a duration of between 213ms and 1065ms. To shed 

light on which periods contain the most salient information, we 
considered intervals both before the temporal midpoint of a touch 
(213-639ms), after the temporal midpoint of a touch (213-426ms), 
and the combination of these ranges. We omitted the 639ms period 
after the touch mid-point due to the high latency it entails and 
the fact that we terminated audio capture 500ms after fnger up. 
The performance of models constructed during this grid search 
procedure on our fnal test data set are shown in Tables 1 and 2. 
Perhaps unsurprisingly, they indicate that peak accuracy (93.7%) 
is achieved with the most data: the confguration that includes the 
greatest range (nSamples set to 300, 54cm refections) and time pe-
riod (nSeqs set to 100, including 60 samples before and 40 samples 
after touch midpoint, 1065ms). However, we note that performance 
with lower distances remains high—data from a range of just 9cm, 
encompassing the fnger and hand, achieves an accuracy of 89.43%. 
We suggest the benefts from including further ranges may be due, 
in part, the presence of echoes or multiple refections from the 
hand and wrist. In terms of time, periods before the touch midpoint 
showed modest improvements over those after it, while the com-
bination of both periods led to peaks; we conclude that motions 
of both fnger approach and retraction from the screen contained 
valuable information to support classifcation. In addition, the short 
periods around the touch midpoint, where fnger and hand motions 
are likely small or slow, showed low performance. The key sonar 
features therefore likely relate to the changing sonar refections 
that are recorded as the hand moves. Data from more static poses 
were less salient. Based on these results, we selected the optimally 
performing general model confguration, using data from a range 
of 54cm (nSamples = 300) captured over periods of 1065ms (nSeqs = 
100), for all further tests. 

To validate performance, we produced two further sets of models: 
individual models and Leave One Out Cross Validation (LOOCV) 
models. In the individual models, each participant’s own data was 
used to produce a model. We followed the same procedures used to 
create the general model: an 8:2 train/test data split and fve-fold 
cross-validation procedures on the training set. For the LOOCV 
models, data from each participant served as a fnal test set for 
a model trained using fve-fold cross validation on data from all 
other participants (essentially, a 15:1 train/test split). Data from 
these models are shown in Table 3. Individual models showed a 
similar performance profle to the general model: mean accuracy 
was also 93.7%. We suggest that individual models were unable to 
improve on the general model performance due to the relatively 
sparsity of data in each. Data from the LOOCV models reinforces 
this conclusion. While fair (85.37%), it is notably reduced from that 
achieved using the general or per-user models. This suggests that, 
within our relatively small sample, the sonar fngerprints created 
by each users’ tapping behavior were somewhat specifc to that 
user. In order to achieve LOOCV performance equivalent to that in 
the general model, or individual model performance that exceeds 
it, we would likely need to sample more data from more users. 

It is also worth refecting on the distribution of classifcation 
errors among the fnger classes. Figure 5 shows this for the general 
model and the mean performance for the sets of both individual 
and LOOCV models. Similar trends can be observed. Classifcation 
performance peaks with the index fnger while thumb and middle 
are more frequently confused. This efect is particularly prominent 
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Table 2: Accuracy (in %) for diferent data capture periods, expressed in terms of both nSeqs, the number of impulse estimations 
            performed, and time (ms). In these results, nSamples is set to 300.

Signal Period Before Touch After Touch Before/After Touch 
nSeqs (#) 
Time (ms) 
Accuracy (%) 

20 
213 
62.94 

40 
426 
86.37 

60 
639 
89.59 

20 
213 
60.95 

40 
426 
82.39 

20/20 
213/213 
69.98 

40/40 
426/426 
90.81 

60/40 
639/426 
93.72 

Table 3: Accuracy (in %) for individual and LOOCV models, including mean (µ) and standard deviation (σ ) from all participants. 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 µ σ 
Individual (%) 92.32 92.49 93.2 90.93 95.32 94.04 92.48 95.94 93.27 95.64 93.44 94.86 89.07 96.62 95.04 94.74 93.71 1.98 
LOOCV (%) 88.25 74.51 89.78 78.28 85.47 81.62 88.62 95.23 85.54 89.1 91.99 86.31 79.64 80.47 83.37 87.72 85.37 5.43 

General Model Individual Model LOOCV model 

92.5 1.9 5.6

2.3 96.8 0.9
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Figure 5: Confusion matrices for SonarID classifers (% accuracy). Left: general model; center: mean individual model; right: 
mean LOOCV model. 

in the LOOCV models, where thumb and middle fngers are cor-
rectly recognized just 78.8% and 83.2% of the time. We can extract 
a number of implications from this result. First and foremost, it 
suggests that performance in a two class task (as used by Gupta 
and Balakrishnan [8]) of separating the index taps from those of 
other fngers would be high: up to 96% even in the LOOCV models. 
Secondly, it likely refects the diversity of strategies we observed 
for middle and thumb taps—while index fnger taps were universal, 
there were several diferent high level strategies (such as tucking in 
or extending unused fngers) during thumb and middle taps. This 
diversity may have increased the difculty of the classifcation task. 
As such, larger training sets may be able to more clearly separate 
fnger touches based on various diferent strategies. Alternatively, 
customized user models may be able to more accurately cater to a 
given user’s particular touching style. 

5 DISCUSSION AND CONCLUSION 
This paper presents a system that recognizes the fnger tapping an 
of-the-shelf smartwatch using a sonar scene generated and sensed 
via the device’s built-in speaker and microphone. It achieves a peak 
accuracy of 93.7% for both individual and general models and a 
LOOCV accuracy of 85.4%. These results compare favourably to 
prior work implementing fnger identifcation using standard smart-
watches. TriTap [4], for example, uses touchscreen data for a similar 
classifcation task and achieves an accuracy of 79.4% using individ-
ual models and natural touches. Furthermore, the performance we 
report is only marginally reduced compared to systems that track 
worn objects, such as the magnetic ring in MagTouch [28] that sup-
ports a recognition rate (among index, middle, and ring fngers) of 
95.03%. We argue that the convenience and practicality of enabling 

input with an unencumbered touching hand ofer advantages over 
systems that require users to wear additional hardware. 

It is also worth discussing the detailed performance profle of 
our results. We show strong performance in classifying the index 
fnger and difculty distinguishing between thumb and middle. Tri-
Tap’s [4] capacitive screen implementation shows the strongest 
performance in distinguishing the thumb and confuses the index 
and middle. A multi-modal combination of these two approaches 
would likely be highly complementary. Similarly, SonarID’s abil-
ity to classify thumb taps may be able to extend MagTouch’s [28] 
fnger-only approach with an additional digit. We see strong poten-
tial in combining these modalities in the future. Data from the grid 
search over temporal periods for capturing a sonar signal (nSeqs) 
also presents implications for the design of interactive systems. It 
suggests that peak performance will require continual emission 
and recording of sound—the highest performance we observed uses 
data from both before and after touch. Although prior work has 
argued that power consumption for sonar systems is reasonable 
on a smartphone [36], the impact on smartwatch battery life may 
be more extreme—during the intensive watch use in our hour long 
study, watch battery level declined by 8%-10% for each participant. 
A more efcient approach of recording signals only after a touch 
ofers reduced classifcation accuracy (of 82.39%), suggesting a po-
tential trade-of between power consumption and classifcation 
performance. We also note that using sonar data from after a touch 
implies a latency (roughly equivalent, in our studies, to the 500ms 
commonly used for long tap) before events can be detected. While 
that latency can be avoided by relying on data gathered up until a 
touch occurs, this approach also leads to a more modest reduction 
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in classifcation accuracy (to 89.59%). Future studies and system 
designs will need to fesh out and balance these concerns. 

There are a number of further limitations to this work; these 
signpost next steps for this project. The simplest relates to the 
abundancy of the data we rely on—results from both our individual 
and LOOCV models suggest that improved performance could be 
achieved with larger training sets. While this could be achieved 
simply via extended empirical work, we also highlight the need to 
explore data augmentation techniques on our existing data set [31]. 
Such techniques may enable us to improve the performance of our 
classifers without requiring further studies. Similarly, we may be 
able to improve or optimize the classifer itself. One key way which 
this could be done is by reducing the number of parameters in 
the models—this is currently approximately 58M, a fgure reported 
to be high for use on a wearable device [13]. To explore the vi-
ability of lowering this fgure, we constructed two new versions 
of our general model. In one we removed the frst dense network 
layer (1024 units, reducing the total parameters to 7.3M) and in 
the second we also added a new max-pooling layer after the initial 
Conv2D layer (leading to 1.7M parameters). Accuracy in these mod-
els remained high at 93.5% and 92.2%, respectively. These results 
highlight both the robustness of our solution and the potential for 
optimizing performance further by exploring more sophisticated 
classifer architectures. 

While these technical activities may improve and further val-
idate our system, we also note further studies are inevitable. Al-
though much work in fnger identifcation uses a single study [4] or 
pose [8], other authors note the advantages in terms of robustness 
and validity that can be realized by sampling data from various 
situations [28]. While the seated, hand-ready pose we use in this 
work is both common and representative, a clear next step for this 
work is to capture data from more diverse situations and envi-
ronments. These should include while standing, with the arms in 
various poses, and with an increased diversity of tapping styles, 
such as fully separated single touches that each involve a fnger 
approaching the watch independently. While performance may 
change if data is captured from more diverse poses, we note that 
our current results indicate that proximate sonar refections from 
4.5cm and 9cm, involving just the touching fngers and hand (see 
Table 1), lead to relatively high accuracy levels of up to 89.43%. This 
result suggests SonarID may be resilient to changes in upper arm or 
body pose as such variations would likely impact only more distant 
sonar refections. In addition, it will be important to explore the 
robustness of our technique to various forms of environmental dis-
turbance such as as diferent ambient noise conditions (situations 
in which which closely related prior sonar systems have performed 
well [36]), or wind—a form of environmental disturbance widely 
acknowledged to reduce the signal to noise ratio of sonar systems. 
Our future plans for this project involve addressing these issues. By 
capturing more data in diverse settings and exploring techniques 
to augment that data, we believe we can construct classifers with 
improved accuracy and increased validity. Doing so will ensure the 
technique we describe works not only on of-the-shelf devices but 
also in real-world settings. 
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A SONAR FINGERPRINT SAMPLES 
Figure 6 shows a set of sonar fngerprints captured from diferent 
users in our study. We include four correct classifcations for each 
of thumb, index and middle fnger: the frst four rows of images in 
each column. The frst three of these rows show relatively similar 
images, while those on the fourth row are somewhat distinct. They 
come from a single participant (P11) who adopted a less common 
tapping style in which each touching fnger was extended alone, 
with all other fngers tucked into the palm (see Figure 3). Addition-
ally, the fnal two rows of images show examples of all possible 
fnger misclassifcations. These images suggest that taps by individ-
ual fngers, such as the index fnger for the majority of participants 
and all fngers for P11 (fourth row), lead to a simple, proximate 
set of sonar refections: a single extended fnger presents a limited 
and nearby surface for sound to strike. Thumb and middle taps, in 
which other fngers are extended for most users, present a larger 
set of surfaces and more complex refections, with middle fnger 
taps leading to noticeably more distant refections than thumb taps. 
This suggests that aspects of hand pose are reliably captured in 
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our sonar fngerprints. Additionally, our study involved a task in to tapping likely lead to the diferences, and reliable classifcation 
which an index fnger tap was used to start a trial. Cues related to performance, observed in cases where the diferent fngers were 
subsequent movements of the hand rightward or leftward to posi- presented alone (e.g., P11, fourth row of images). 
tion, respectively, the thumb or middle fnger over the screen prior 
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Figure 6: Representative sonar fngerprints. Columns show sonar fngerprints labeled as Thumb (left), Index (center) and 
Middle (right) fnger. First four rows show correctly classifed fngerprints, while the fnal two rows show incorrectly classifed 
examples. In each fgure, the x-axis depicts the number of samples (nSamples = 300) used, representing the maximum distance 
at which sonar refections can be received, while the y-axis depicts the number of Zadof-Chu sequences (nSeqs = 100) used, 
representing the period of time that data is captured from. Numbers indicating the participant who generated each example 
are marked in white text at the top right corner of each sonar fngerprint. 
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