
SchemaBoard: Supporting Correct Assembly

of Schematic Circuits using Dynamic In-Situ Visualization

Yoonji Kim1, Hyein Lee1, Ramkrishna Prasad1, Seungwoo Je1, Youngkyung Choi1,

Daniel Ashbrook2, Ian Oakley3, Andrea Bianchi1

Industrial Design KAIST1,

Human Centred Computing University of Copenhagen2, Human Factors Engineering UNIST3

{yoonji.kim; hyein.l; rprasad; seungwoo_je; youngkyung.choi; andrea}@kaist.ac.kr1,

dan@di.ku.dk2, ian.r.oakley@gmail.com3

Figure 1. SchemaBoard is an LED-backlit solderless breadboard that can programmatically illuminate its rows to reflect the components or nets that
are interactively selected in a schematic shown in a companion software application on a tablet PC. Users can be cued to place or check components
based on the rows lit up in response to touching schematic symbols or pins on the circuit diagram shown on the screen of the tablet.

ABSTRACT
Assembling circuits on breadboards using reference designs
is a common activity among makers. While tools like Fritz
ing offer a simplified visualization of how components and
wires are connected, such pictorial depictions of circuits are
rare in formal educational materials and the vast bulk of on-
line technical documentation. Electronic schematics are more
common but are perceived as challenging and confusing by
novice makers. To improve access to schematics, we propose
SchemaBoard, a system for assisting makers in assembling
and inspecting circuits on breadboards from schematic source
materials. SchemaBoard uses an LED matrix integrated un
derneath a working breadboard to visualize via light patterns
where and how components should be placed, or to highlight
elements of circuit topology such as electrical nets and con
nected pins. This paper presents a formative study with 16

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST’20, October 20–23, 2020, Minneapolis, MN, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6708-0/20/04. . . $15.00

DOI: https://doi.org/10.1145/3313831.XXXXXXX

makers, the SchemaBoard system, and a summative evaluation
with an additional 16 users. Results indicate that SchemaBoard
is effective in reducing both the time and the number of er
rors associated with building a circuit based on a reference
schematic, and for inspecting the circuit for correctness after
its assembly.

Author Keywords
Physical computing; circuits; breadboard visualization;
system.

CCS Concepts
•Human-centered computing → Human computer inter
action (HCI);

INTRODUCTION
The ready availability of cheap sensors, components, and plat
forms such as Arduino1 has encouraged many creators and
makers without formal electrical engineering training to tackle
circuit design and assembly tasks. Open-source tools, such as
the Fritzing project [16] and Tinkercad by Autodesk2, have
been crucial in enabling non-technical users in the process
1https://arduino.cc
2https://www.tinkercad.com

1

https://doi.org/10.1145/3313831.XXXXXXX
https://arduino.cc
https://www.tinkercad.com
mailto:permissions@acm.org
mailto:dan@di.ku.dk2
mailto:andrea}@kaist.ac.kr1

of making, sharing, and producing electronic circuits. A key
enabling feature in both Fritzing and Tinkercad is a simplified
visualization of the circuit topology. Traditional circuit designs
are most frequently depicted in schematic form, an abstract
representation of the electrical connections between compo
nents [24]. In contrast to this, Fritzing and Tinkercad, present
a pictorial, or literal, view of the circuit, with images of the
components as they physically appear, often in conjunction
with images of a physical breadboard and connecting wires.
The simplicity of this depiction has led to it becoming a de
facto standard in maker communities—it is often the preferred
circuit representation in guidebooks [5, 10, 20], tutorials3 and
maker project documentation4; it is also widely deployed in
the research community among groups seeking to develop new
tools or tool kits for circuit development [1, 9, 15, 18, 26].

Despite their ubiquity in the maker community, pictorial repre
sentations of circuits suffer from two main problems. Firstly,
pictorial diagrams are limited in the complexity and scale
of the circuits they can describe. Pictorial diagrams rapidly
become messy and difficult to read [8], and although this prob
lem can be mitigated by careful adherence to clear circuit
style practices [8], the adoption of such standards takes time
and requires training. Secondly, although pictorial circuits
are common in online tutorials for makers, they are rare in
formal educational material (e.g., textbooks) and the vast bulk
of online technical documentation. Electronic schematics are
therefore often considered as a “necessary evil’ [17], because
a maker seeking to build a complex circuit or independently
study electronics cannot avoid them. However, the abstract
nature of electronic schematics presents a substantial problem
that hinders their adoption among makers: the transition be
tween schematic and physical circuits is not as obvious as with
pictorial representations, making the process of physically as
sembling a circuit on a breadboard or inspecting its correctness
difficult. This task is well studied [4,8], and researchers report
it to be difficult, especially as the number of nets in a circuit
increases [28].

In this paper, we address this problem by trying to improve
the link between schematic and breadboard representations.
We present SchemaBoard, an enhanced physical breadboard
that incorporates software controlled visual highlighting of
specific pin rows. It supports circuit assembly tasks such as
accurate component placement and inspection of electrical
nets directly on the breadboard. By using in-situ visual cues
to highlight parts of a breadboarded circuit, SchemaBoard
directly depicts the mapping between the semantic representa
tions shown in schematic diagrams and the arrangements of
physical components, wires, pins, and nets that form actual
physical circuits. We argue that this more explicit mapping
simplifies and speeds up the assembly and inspection of cir
cuits on breadboards. We presents a formative study with
16 users that motivated SchemaBoard’s design, the technical
details of the system, and a summative evaluation with 16
additional participants that demonstrates the benefits of our
approach.

3https://learn.adafruit.com
4https://www.hackster.io

RELATED WORK

Tools for circuit construction
Building a circuit is a challenging task for makers [4] that
requires them to combine knowledge about the specific com
ponents that are needed, the appropriate values of those com
ponents (e.g., resistance or capacitance) and the way they
should be connected. After an initial circuit is assembled,
it typically needs to be inspected by checking connections
and wiring until it is functional. Due to the complexity and
interleaved nature of these tasks, makers find it difficult to
determine the precise source of errors [4]. Mellis et al. [21]
also found that debugging components and their connections
on a breadboard are challenging for amateurs and presented
opportunities for tools to help them, such as automatic assem
bly. Indeed, the severity of these problems (and the high level
of knowledge required to build circuits in general) has led to
numerous educational tools that seek to lower the bar to entry
in this area. A common approach is to create modular tools
and systems that allow circuits to be constructed manually
by snapping together [2], plugging in [23] or virtually link
ing [6] component elements. These approaches, differently
from SchemaBoard, are limited in that they require predefined
(non-standard) components. CircuitStack [26] supports the in
tegration of inkjet-printed circuits into breadboards to entirely
avoid the need for wiring. Circuits are printed with conduc
tive ink and clamped to the base of a special breadboard in
order to implement a functional circuit. However, this system
still requires users to manually assemble circuits by placing
components on a breadboard, with the additional challenge
of having to match unmarked physical locations on the bread
board (i.e., without visible wires) against those shown in a
reference diagram.

Other tools for circuit construction focus on learning. For
example, ElectroTutor [27] and HeyTeddy [14] allow novices
to use standard hardware components with the Arduino UNO
and provide structured unit-testing frameworks that check the
correctness of their circuit, their code, and their understanding.
CircuitStyle [8] aims to encourage and support good circuit
construction practices through a web-based tool that provides
authoring functionalities and interactive live tutorials. Finally,
Belluci et al. [3] reported initial findings of an Augmented
Reality (AR) prototype that guides the placement of compo
nents on a breadboard, given a pictorial representation of the
circuit. This system does not work with schematic diagrams,
and does not support placement of components on crowded
breadboards, when the users’ hands or other components oc
clude the tracking camera. In contrast with these examples,
SchemaBoard does not focus on learning, but rather on improv
ing the assembly and inspection of circuits on a breadboard,
given an arbitrarily complex reference schematic diagram.

Circuit inspection and augmented breadboards
Incorrect assembly of circuits is common [4], and the resultant
errors can usually only be identified by a slow and tedious man
ual inspection of the breadboard connections. Several research
projects have sought to improve this process by preventing (or
minimizing) circuit design errors. For example, AutoFritz [18]
interactively provides wiring suggestions to minimize user

2

https://learn.adafruit.com
https://www.hackster.io

errors while Scanalog [25] and Trigger-Action-Circuits [1]
suggest and visualize circuit designs based on high-level de
scriptions of behavior specified with graphical programming
languages. In these latter systems, user input relates mainly to
desired circuit function rather than low-level implementation
details. While effective, we note that these projects do not
directly support correct circuit assembly, but rather focus on
providing clear pictorial representations of circuits that can
serve as more accessible alternatives to schematics.

Another common approach to circuit inspection is via aug
menting breadboards. One theme is to support live, automatic
measurement of electrical properties, such as voltage [9,22] or
current [29], at different points on a breadboard. Bifröst goes
one step further by capturing and visualizing both hardware
and software behavior in a single tool [19]. Visualizations
of measured data are typically presented in-situ on the bread
board via LED lights [22], interactively via an on-screen pic
torial schematic [29] or both [9]. In contrast to SchemaBoard,
these projects are intended to support debugging of operational
circuits, and are thus reliant on a user’s ability to correctly as
semble the circuits under test. Furthermore, these projects do
not offer any explicit support for the basic and manual task of
circuit assembly—situations in which circuits are still under
construction and therefore not operational.

FORMATIVE STUDY
While prior work for assisting makers in creating electronic
circuits is diverse, we argue there remains a lack of support for
the fundamental task of physically placing components and
wires on a breadboard, and inspecting the correctness of final
assembled circuits. Indeed, the precise, fussy and confusing
task of correctly placing wires and components in sockets to
realize a circuit depicted in a schematic or pictorial circuit
diagram remains much the same today as it was when bread
boards were originally introduced 40 years ago [4]. To better
understand the problems and issues users face during circuit
breadboarding, and inform the design of potential solutions,
we recruited 16 self-identified makers from the local student
body to participate in a formative study. The study explored
and contrasted performance in the tasks of both assembling
and inspecting a circuit on a breadboard when users were
provided with one of two distinct visual representations of a
circuit: a standard electrical schematic or a pictorial diagram
(as in Fritzing).

Thirteen participants were male and three female and they
were aged between 20 and 32 (M=25, SD=3.83). Ten were
graduate students and six undergraduates. They had vari
ous backgrounds including engineering, design, and Human-
Computer Interaction. All had some experience in assembling
circuits, yet none of them had received formal training in
electrical engineering. Using a 7-point Likert scale, they self-
rated their ability of reading and building circuit diagrams 5.6
(SD=.96).

To provide recent experiences for participants to reflect on
in the study, we prepared breadboard circuit assembly and
inspection tasks. To ensure these tasks were representative of
those undertaken in the maker community, we examined the

full set of example projects available on the Fritzing website5.
We retrieved 5083 projects, removed duplicates (700) and
corrupted (67) designs to yield a set of 4316 non-corrupted
and unique projects. These projects featured a median of seven
components connected by a median of 11 wires. We randomly
selected four circuit diagrams from this corpus, each with
6 or 7 components connected by between 14 and 17 wires.
We manually created equivalent schematic representations for
each diagram.

There were two binary independent variables in the study:
task type (assembly/inspection) and instruction format
(schematic/pictorial). These were arranged in a repeated mea
sures factorial design: all participants spent a maximum of
ten minutes working on a circuit in each condition, ultimately
experiencing all four circuits. Participants could indicate when
they finished a circuit at any time with the ten minute time
limit. Circuits were randomly assigned to specific conditions,
while presentation order was balanced using a Latin square de
sign. Instructional materials (circuit schematics or diagrams)
for assembly tasks were unmodified from the originally se
lected examples, whereas for inspection tasks deliberate errors
were introduced. Specifically, following the error classifica
tion in prior work [18], we introduced ten errors in total, two
of each of the following five types: miss-wired components
and wires as well as missing connections for components and
wires, and misplaced components.

In the study, we recorded a video from both top-down (for a
clear view of the breadboard) and in front of participants, con
ducted a 20-minute post-task semi-structured interview, and
measured workload using the NASA TLX questionnaire [12].
Participants were compensated with ten USD in local currency.
Additionally, as a performance incentive, participants received
5 USD for each pair of circuits that were error-free at the end
of the study.

Results
Ten (15.62%) of the study tasks were not self-assessed as com
plete with the ten minute limit, with incomplete trials evenly
split among both study variables (four with schematics, six
with Fritzing and four during build and six during debug tasks).
We recorded completion times for tasks using a stopwatch or
extracted them from the video recordings in ambiguous cases.
We measured errors by counting the number of misplaced
components and wires for circuits in the assembly task, or
the number of unidentified or misidentified mistakes in the
inspection task. Two researchers independently counted er
rors, and, in case of numerical disagreement, discussed each
case to reach an agreement. We analyzed all study data using
two-way ANOVAs with two independent variables—reference
diagram (pictorial vs. schematic) and task (assembly vs. in
spection). Figure 2 summarizes the numerical results from
the study. It shows nearly identical performance in terms of
errors and time, while schematics resulted in modestly reduced
overall workload. No significant main effects or interactions
were found. This data suggests that, at least for the tasks we

5http://fritzing.org/media/fritzing-repo/projects (accessed
March 2019)

3

http://fritzing.org/media/fritzing-repo/projects

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 Avg (SD)

Components translated 5 6 6 6 0 6 1 7 4 4 7 7 6 7 5 5 5.13 (2.06)
Components rotated 0 0 0 0 0 0 0 0 2 0 2 1 0 3 1 0 0.56 (0.96)
Mean Translations per Component 3.3 9.0 4.8 13.5 0 4.0 0.3 5.0 6.2 3.0 8.7 8.0 8.0 5.7 3.6 2.3 5.33 (3.5)
Wires added/removed -2 0 1 -5 2 -1 0 1 -8 -6 -2 0 -1 -8 -3 -4 -2.25 (3.15)

Table 1. Summary of measured inconsistencies between the pictorial reference and actual circuit on a breadboard. Translations are measured as the
offset of rows. For wires added/removed, a positive number indicates use of additional wires, while a negative number indicates use of fewer wires.

selected, neither the diagramming format used, nor the task
undertaken, led to clear consistent variations in performance.

Figure 2. Time, errors and cognitive load for schematic and pictorial
diagrams in assembly and inspection tasks in the formative study.

In terms of qualitative data, we collected 4 hours and 23 min
utes of interviews. These were transcribed and analyzed by
two researchers using open and axial coding methods. We ex
amined this material to achieve a more nuanced understanding
of participants’ behavior and performance. Specifically, we ex
plored how users experience working with both schematic and
pictorial representations in order to learn about the challenges
specific to each format and identify potential opportunities for
design.

Makers who self-rated a low confidence with schematics (P2,
P5, P6, P7, P11, P15, P16) reported difficulties in both in
terpreting the schematics and in translating the abstract cir
cuit topologies into physical wiring on a breadboard. Some
participants were concerned about how to place components
with many pins or with polarity, since schematic symbols
do not visually resemble component appearance (P11, P15,
P16). Others were confused by the abstract representations
of nets and debated on how to translate them physically onto
the breadboard: “there were three junction dots where the
lines are connected in the schematic diagram, which should
be connected to the same row of the breadboard. However,
[breadboard and schematic representations] do not correspond
to each other, so it’s hard to figure out how to handle it (P15).”
Participants also reported challenges in creating appropriate
circuit layouts. Specifically, as schematics provide no guid
ance on part placement, participants often found their initial
choices caused knock on problems down the line. This ulti
mately required them to iterate on layouts, a process which
typically involved laborious dis- and re-assembly of parts of
their circuits mid-task: “I realized that it would have been bet
ter to place the button below the chip after I finished the wiring
[...] it was annoying to move the components and rewire them
(P14).”

Pictorial representations, on the other hand, were highly ap
preciated for their simplicity and directness, which allowed
participants to “lay out components without thinking (P2)”.

This process, however, was not without hitches—ten partic
ipants, for example, noted their circuits “gradually diverged
(P13)” from the pictorial reference. There were numerous
reasons, from accidental mistranscriptions—“I tried to modify
my breadboard circuit as closely as possible to the pictorial dia
gram, but I went astray in the middle (P12)”—through to inten
tional improvements—“the reference circuit used two ground
rails which seemed unnecessary, so I removed a ground rail
and changed wire placements (P15).” Regardless, as their own
circuit diverged from the pictorial diagram, users reported the
need “to convert [the] pictorial representation into a schematic
and map it onto the breadboard again for reviewing (P3).” This
process was considered arduous. Similar problems impacted
the inspection task, where users had to look for miss-wiring
or incorrect connections. P11 summed it up: “The breadboard
circuit was not identical to the reference, so I needed to check
the connections [...] I had to [mentally] convert the pictorial
representation to a schematic diagram, and this was difficult
[...] it was easier to use the schematic rather than pictorial
representation to find the wrong connections.”

These findings, highlighting the pros and cons of both
schematic and pictorial diagram formats, shed light on the
lack of significant differences in the quantitative data. They
suggest that while makers found the simpler and more direct
format of the pictorial diagrams appealing in terms of the clar
ity with which it physically depicted breadboard layouts, these
properties also made understanding the underlying logical
structure of the circuit more challenging that with schematics.
This led to problems whenever there were layout discrepancies
between the diagrams and breadboarded circuits. This was a
relatively common occurrence—see Table 1 for a summary
of how the final circuits differed from the pictorial references
provided in the assembly task. Just one user created a circuit in
which all of the components were in the specified breadboard
locations, ten (62.5%) used fewer wires and three (18.75%)
used more. These differences appear driven by a desire to
either simplify what was viewed as excess wiring on the bread
board (e.g., by consolidating ground rails) or to space out
components over the breadboard to simplify viewing. This
latter process tended to increase the number of wires that were
required.

In summary, our findings confirm prior work suggesting that
makers find allocating positions and resolving problems with
the components and wiring on a physical breadboard circuit
challenging [4, 8] using either schematic and pictorial source
materials. While both approaches present unique sets of prob
lems, we identify increasing access to and facilitating use of
schematics for makers as a key opportunity for design. Specifi
cally, while participants valued the logical, abstract representa
tion of circuit schematics for problem solving, they felt a need

4

for improved support for basic layout tasks such as arranging
or orientating components on a breadboard. In addition, our
observations about pictorial circuit diagrams highlight some
of key qualities to be emphasized in any new prototype in
this space. Specifically, while direct pictorial ”put-that-there”
instructions were appreciated, they also did not scale to the
incremental changes that creep into a design. Solutions in
this space need maintain accurate, high quality guidance as
users intentionally tweak and adjust designs and also reduce
the chance for inadvertent component placements that lead to
accidental divergences.

The formative study results suggest a need for tools that can
combine the advantageous qualities of both abstract and picto
rial representations of circuits. We see one way of achieving
this as by designing systems that emphasize the links between
abstract schematic views and concrete layouts on a bread
board. Within this space, this paper proposes a solution based
on interactive in-situ visual cues that augment the topological
information in the schematics with direct unambiguous guid
ance about where components should be located on a physical
breadboard.

SCHEMABOARD SYSTEM OVERVIEW
SchemaBoard (Figure 1) aims to support users in the transition
between an on-screen schematic representation of a circuit and
its corresponding physical instantiation on a breadboard. The
main objective is to help users correctly place components on a
breadboard (assembly task), and supporting quick inspections
of whether the layout is congruent with the schematic diagram
it is based upon (inspection task). SchemaBoard achieves this
by maintaining a dual representation of circuit diagrams (a
computer based schematic view linked to a physical bread
board layout), and by externalizing this mapping via in-situ
visualization using an LED matrix underneath the breadboard.

SchemaBoard works as follows. First, it internally computes
the location of the components in any schematic diagram, and
automatically maps them to physical locations (i.e., rows) on
a breadboard. SchemaBoard offers an interactive highlight
ing feature to visualize each computed component location
directly on its coupled physical breadboard. When the user
touches an on-screen element of the schematics (i.e., a com
ponent or a pin), SchemaBoard lights up the corresponding
rows of the breadboard (Figure 3). SchemaBoard supports

highlighting component locations, including blinking to in
dicate the first pin (the standard reference point) for ICs and
the negative pin for polarized components such as capacitors,
diodes, or LEDs. SchemaBoard also uses highlighting to show
all the rows connected to selected electrical nets, giving an
overview of connectivity even on crowded breadboards. With
this feature, users can quickly identify the location and ori
entation of components and wires before placing them, or
readily verify the correctness of component placements when
inspecting assembled circuits.

SchemaBoard operates in two modes—a manual mode that
allows users to explicitly select components and nets, and a
guide mode that provides step-by-step circuit assembly for all
the elements of a circuit. Users can switch between the two
modes at any time using a toggle button. In the manual mode,
users are free to inspect the location of components and nets,
using single or multiple selections (Figure 4). Users can also
manually change the mapping between the schematic and the
component location on the breadboard, by dragging the com
ponent’s graphical representation to a new location on a virtual
breadboard displayed in software—a feature that mimics the
component placement technique used in prior work [15].

In the guide mode, SchemaBoard provides step-by-step circuit
assembly instructions (Figure 5). Here, rather than the user
determining the best order for component placement, they can
simply follow the system directions. SchemaBoard indicates
on-screen which component to place by name and by high
lighting it in the schematics, and illuminates the rows on the
breadboard where the user should insert the component or
wire. Each jumper wire position is indicated by illuminating
two rows of SchemaBoard simultaneously. As with interactive
highlighting, it flashes a breadboard row to indicate polarity or
pin 1 for ICs. Guides are structured such that all components
are placed first, followed by connecting all wires. An optional
final stage checks whether all components and wires are cor
rectly connected. In this stage, the software highlights all the
electrical nets—all the rows in the circuit that are connected
to the same circuit node—allowing users to quickly verify
missing or misplaced circuit elements.

In summary, given a schematic, SchemaBoard computes valid
locations of components on its breadboard and visualizes them
in-situ using an underlying LED matrix. It also maintains an
internal record of the topology of the circuit, so that the user

Figure 3. Schemaboard circuit diagram showing a selected component
highlighted in orange in the schematic view (left). SchemaBoard bread- Figure 4. Schemaboard software showing highlighting of the ground net
board highlighting the rows where the component should be placed. A via orange colored pins in the schematic view (left). Multiple correspond-
blinking row indicates where to position pin 1 (right). ing rows are visually highlighted on the breadboard (right).

5

Figure 5. SchemaBoard Guide Mode showing instructions for placement
of components (left), wires (center), and optional check of all the nets
(right). Orange highlights show the current component or wire while
green highlights show those for which instructions have already been
provided.

can freely modify it, or can highlight specific nets to visualize
planned pin connections. We note that SchemaBoard does
not sense components’ locations [30] and therefore cannot
prevent users from incorrect placements or detect erroneous
circuits [9, 29]. In contrast, it is instead designed to support
users in accurately mapping schematic diagrams onto physical
circuits by providing an initial valid reference layout, flexibly
accommodating users’ adjustments to that design and provid
ing in-situ feedback on the breadboard to help ensure that the
circuits that are created correctly instantiate the design in the
schematic and are free of errors.

IMPLEMENTATION

Hardware
The SchemaBoard hardware (Figure 6) takes the form of a
standard 45x35 mm mini breadboard with two symmetrical
sets of 16-terminal strips (32 in total). Each strip has five in
terconnected 2.54 mm-spaced sockets and sits over a uniquely

Figure 6. SchemaBoard hardware. The part of the PCB designed to fit
underneath a breadboard is structured as two columns of bars. Each
bar features a single LED mounted at its center and is bordered top
and bottom by a small gap. Each bar fits within a row of five standard
breadboard spring clips without disrupting wire placement (see right of
figure). The LEDs are powered and controlled via connections at the left
and right of the bars.

Figure 7. SchemaBoard software UI.

addressable blue LED —one LED per breadboard row. The
LEDs and breadboard are part of a custom PCB in the form of
an Arduino UNO shield. The connected Arduino can instruct
one or more of the LEDs to switch on, switch off, or blink pe
riodically. This is achieved through four cascading 8-bit shift
registers (SN74HC595DR), each responsible for controlling
eight LEDs (for a total of 32 LEDs, as shown in Figure 6). In
order to make the LED light visible to users while maintaining
breadboard functionality, we used surface-mount LEDs sol
dered on the top layer of a perforated circuit board. Then the
strips, connecting the rows, are mounted so as to enclose the
LEDs (see Figure 6-right). The light is scattered by the strip
resulting in the entire row being lit. The system is powered by
a 12V external DC power adapter that is regulated to 5V on the
board for compatibility with the Arduino. The Arduino is con
trolled via a serial connection to the SchemaBoard software
running on a PC.

Software
The SchemaBoard software consists of three separate modules
that: control the breadboard LEDs; create and maintain an
internal representation of the circuit diagram and its topology
and; display the SchemaBoard UI. The breadboard control
module runs on SchemaBoard’s Arduino and simply controls
the LEDs in response to commands issued from a connected
PC over a serial link. The PC runs software, in the form
of a NodeJS6 server, that issues commands to the hardware
and can load a common format for schematic diagrams (Ki
Cad7 .sch files) and process these with a solver that produces
valid physical breadboard layouts. This solver operates on the
schematic’s netlist, which is comprised of lists of intercon
nected component pins. First, it assigns the two top-left rows
of the breadboard to ground and the two top-right to power.
Next, it places components across the breadboard (e.g., dual
in-line packages such as ICs). The solver then determines
6https://nodejs.org
7http://kicad-pcb.org/

6

https://nodejs.org
http://kicad-pcb.org/

the number of rows needed for each net; if more than four
components need to be connected together, it uses one pin
to bridge between two adjacent rows (because SchemaBoard
uses a standard five column breadboard format). Finally, the
script lays out the nets uniformly, trying to keep components
close to each other and minimizing the number of jumper
wires for connections. This whole optimization process needs
to run only once per schematic, and its results are stored as
files in JSON format. Finally, the PC software can accept
wireless connections from the SchemaBoard UI software in
order to transmit data abut the loaded schematic file and calcu
lated breadboard layout as well as to propagate commands to
control the breadboard highlighting. Currently, SchemaBoard
supports 20 common schematic symbols including three ab
stract or generic components (8 pin chip, 16 pin chip, 2 pin
component) that can be used to describe the connections of
a wide range of different devices. The set of supported sym
bols/components was selected from an analysis of a database
of circuits disseminated in the maker community. It featured
the following symbols: battery; vcc; ground; 8 pin chip; 16 pin
chip; 2 pin component; unpolarized capacitor; polarized ca
pacitor; resistor; photo-resistor; inductor; diode; Zener diode;
transistor; 6 pin relay; op-amp; 555 timer; LED; speaker and;
switch.

The SchemaBoard UI software runs on a tablet (Samsung
Galaxy Tab S5e) and was written using Unity 3D in C#. It is
responsible for the overall system logic, calculating the states
of the LEDs, handling user input, and graphically visualizing
schematics— Figure 7 shows this interface. The tablet com
municates via a HTTP wireless connection to the NodeJS8

server on the PC. At startup, users load a schematic. Once
selected, this is sent to the solver on the PC (via http), and
the resulting JSON file of nets and connections is returned.
Using toggle buttons the user can select the mode of operation
(manual or guide) and how the components should be visual
ized (using traditional schematic symbols or pictorial icons).
This dual visualization was motivated by our study findings,
as some users remarked they were unable to clearly identify
components using their schematic symbols. In the UI, users
can tap any component or connection. This is then highlighted
on the screen and, via commands propagated to the Arduino
by the PC server, also on the physical breadboard, where all
connected rows light up. On-screen color overlays also re
veal which components are currently selected, and, in guide
mode, the components for which instructions have already
been provided.

SchemaBoard’s hardware and software are open-source and
full details, including research related materials, can be found
online at https://github.com/makinteractlab/SchemaBoard.

EVALUATION STUDY
We conducted a two by two mixed-design study with mak
ers to compare the tasks of assembly and inspection of cir
cuits (within subjects) using either SchemaBoard or a base
line involving traditional use of schematic diagrams (between
groups). We recruited sixteen makers, thirteen male and three
female, aged 19-30 (M=24.4, SD=3.3). Ten were graduate
8https://nodejs.org

students and the remaining six undergraduates. They had var
ious education backgrounds including engineering (biology,
computer science, material science, mechanical and electronic
engineering), physics, and industrial design. None was pre
viously involved in the formative study. Participants were
randomly assigned to either SchemaBoard or baseline condi
tions. To check for population biases between the two groups,
we collected an initial self-efficacy score [7] that represents
individual confidence in assembling circuits using schematic
diagrams. Participants in the SchemaBoard group rated them
selves 71.8/100 (SD=11.7) and in the baseline group 75/100
(SD=9.2). An independent-samples t-test revealed no differ
ences between these groups, suggesting that skill levels among
the two groups were relatively homogeneous.

The experimental procedure closely mirrored the formative
study. Each participant completed two tasks: assembly of
a circuit from scratch, and inspection of a provided circuit
with standard errors introduced as bugs. In both the base
line and SchemaBoard conditions, we provided schematics
as a reference. Before starting the experiment, we introduced
the SchemaBoard group to the system via a five-minute tu
torial session with a simple example circuit. When using
SchemaBoard in the study tasks, participants could use any of
its features including both the guide (step-by-step) and manual
modes (manual selections). The system started up in guide
mode. For the tasks, we selected two representative circuits
from the Encyclopedia of Electronic Components [13]. Both
circuits had 10 components (e.g., IC, LED, switches, capac
itors, resistors, speaker) and required 4 to 7 wires. For the
inspection tasks, we introduced ten standardized errors in each
circuit using the same convention adopted in the formative
study. We fully balanced assignment of circuits to tasks.

After a brief introduction, each participant performed the as
sembly and inspection tasks for up to 20 minutes followed by
a NASA TLX [12] questionnaire to measure workload and
again a self-efficacy questionnaire to assess participants’ con
fidence in their performance. The longer duration of the tasks,
compared to that in the formative study, is due to the use of
more complex circuits (42% more components). Task order
was fully balanced to counter practice or fatigue effects. After
both tasks, we performed a 20-minute semi-structured inter
view. The experiment took approximately one hour and was
recorded on video. Participants were compensated with 10
USD in local currency and additionally received 5 USD if both
circuits were completed correctly. This procedure resulted in
the following measures: task completion rate (within the allot
ted 20 minute time limit); task completion time (for completed
circuits); number of errors in final circuit (for completed cir
cuits) and; TLX workload and self-efficacy scores. We note
that task completion rate was self determined—participants
finished a trial when they believed they had fully and correctly
completed the given study task.

Quantitative Results
We first examined completion rates using two Fisher’s Exact
Tests (FET) [11], one on each of the study variables. FET
was selected due to its suitability for contingency testing on
small samples. This procedure revealed that completion rates

7

https://github.com/makinteractlab/SchemaBoard
https://nodejs.org

were significantly higher in both the assembly task and for
the SchemaBoard group (both p = 0.0068). Examination of
the raw data revealed these differences were due to the fact
that seven study tasks (21.8%) were not completed and that
these failures all occurred in the baseline inspection condition.
This strongly suggests that the inspection task was extremely
difficult for makers using standard schematics—by their own
self-assessment, most participants (87.5%) could not complete
study tasks within 20 minutes. The lack of similar patterns
of failure in the SchemaBoard group provides clear evidence
for the benefits it can provide—rather than just offer improve
ments to efficiency or accuracy, SchemaBoard seems to have
enabled makers to perform a technical task that was otherwise
entirely beyond their abilities. This represents a very strong
endorsement of the system.

The fact that only a single participant completed the inspec
tion task in the baseline condition led to a lack of equiva
lent time and error data for statistical comparison against the
SchemaBoard condition. Instead we simply report these data
for baseline and SchemaBoard and restrict formal analysis of
these metrics to data from the assembly task alone. Figure 8
shows completion time and error data from all tasks that were
self-assessed as complete in the study. For the seven partici
pants who did not indicate they had completed the inspection
task within the time allocated (all in the baseline condition),
we note the mean number of errors was very high in compari
son to all other conditions in the study (M: 5, SD: 3.16)—this
suggests a failure to complete the task is simply a knock on
effect of a failure to isolate and resolve errors in the circuit.
This data provides further evidence that makers find inspecting
and debugging circuits with standard schematics extremely
challenging.

In terms of the assembly task alone, Shapiro-Wilk tests showed
time data was normally distributed and a independent samples
t-test revealed that SchemaBoard led to significantly faster per
formance than baseline (p < 0.001). On the other hand, error
data was not normally distributed and a Wilcoxon signed-rank
test indicated there were no differences in the error counts
between conditions (p = 0.11). Similarly, a FET on the pro
portion of participants whose circuits were genuinely correct
or not (SchemaBoard: 6 from 8, baseline: 3 from 8), was
not significant (p=0.31). This indicates that, for the assem
bly task, SchemaBoard substantially sped up performance (by
approximately 40%, or nearly 6 minutes), but did not lead
to significantly more accurate final circuits. Given the small
number of participants in the study, we suggest that the lack
of significance in the error data may be a type II error. An
alternative explanation may be that the relatively low number
of errors during assembly tasks —an overall median of zero
errors (mean: 0.81, SD: 1.51) per circuit— simply indicates
correctness was not a major challenge for most participants
during the assembly tasks.

Finally, we analyzed TLX overall workload and self-efficacy
scores. The data are presented in Figure 8. Shapiro-Wilk tests
indicated all data was normally distributed so we used mixed
method two by two ANOVAs. All main effects as well as the
interaction in the TLX data were significant. This shows that

SchemaBoard led to significantly reduced overall workload
(F(1,14) = 20.34, p < .001, η̂2 = .542) and higher ratings of G
efficacy (F(1,14) = 5.27, p = .038, η̂G

2 = .251). In addition,
the results highlight the increased challenge of the inspec
tion task—compared to assembly, it led to greater workload
(F(1,14) = 29.24, p < .001, η̂2 = .280) and reduced efficacy G
(F(1,14) = 9.28, p = .009, η̂2 = .068). We note that the G
significant interaction effect in workload (F(1,14) = 23.82,
p < .001, η̂2 = .241) is due to the fact that SchemaBoard G
shows only modest increases (5.9%) in the inspection task,
while baseline shows very substantial increases (44.2%). This
reinforces the data from the task completion rate. It sug
gests that one of the key benefits of SchemaBoard is that it
greatly simplifies the challenging task of circuit inspection and
debug—facilitating completion by lowering the difficulty of
these complex and important activities.

Qualitative Results from Interviews
The 3h 25m of interviews were conducted in the local language
and transcribed and analyzed by two researchers using open
and axial coding methods.

In general, all makers in the SchemaBoard group understood
how to use the system and commented positively on its overall
functionality. P2 stated: “I could easily use [...] SchemaBoard
for assembl[ing] circuits intuitively.” P6 reported that the
dual representation of nets on the screen and through the
LEDs on the breadboard was helpful in both understanding the
schematic and checking the circuit. Furthermore, all makers
appreciated the guide mode because they felt it enabled them
to assemble the circuit and remain confident it was without
missing parts (P8). P7 summed it up as they “trusted the
auto-routed circuit from SchemaBoard”.

Supporting different levels of expertise. Multiple participants
commented that SchemaBoard could support a range of mak
ers, from “elementary school students” (P2) to a more general
set of “those who are new to circuits, to professionals who
make complex circuits” (P4). P8 noted SchemaBoard could
aid both novices and experts, saying: “Using this, even begin
ners will be able to create and test circuits, and experts can
reduce mistakes and debugging time.” Reflecting on their pre
vious experience, a novice (P10, self-efficacy of 6.8/10 in the
pre-study assessment) and expert (P12, self-efficacy of 9.7/10)
users describe what they mostly appreciate of SchemaBoard.

P10 (novice): “I often plugged components in the wrong place
because of the dense pinholes in the breadboard, however, this
would be preventable because the SchemaBoard lit where to
place components.”

P12 (expert): “It’s great to be able to use new parts or chips
that you haven’t experienced without looking at the data-
sheets. The system already has the information of how to
connect the pins.”

Increasing users’ confidence. Overall, all participants appreci
ated how SchemaBoard could fit the working style of makers
with different expertise levels. A possible explanation for this
universal support is that all participants in the SchemaBoard
group reported a quantifiably increased level of confidence

8

Figure 8. SchemaBoard evaluation study results: self-assessed completion rate, independently assessed success rate, workload and self-efficacy. Data
are from all trials.

Figure 9. SchemaBoard evaluation study time and error results. Data
are derived only from trials that were self-assessed as completed.

in building circuits and in trusting the correctness of the out
comes. Participants reported that SchemaBoard “reduced the
concerns [...] about mistakes like polarity and miss-wiring”
(P14) and gave them confidence that the circuit was complete
and inspected: “In previous experience with standard schemat
ics, I [...] often forgot what component had been checked and
what should be next. However, using SchemaBoard, I was
convinced that there was no missing part to check because I
completed all the steps (P8).”

DISCUSSION AND LIMITATIONS
The difficulties that makers experience during assembly of
circuits is a well-studied problem [4, 8]. Past work has sought
to tackle this by preventing design errors in the first place
[1, 8, 18, 25] or by assisting makers in debugging incorrect
circuits [9, 19, 29]. To complement this work, we examine the
fussy, tedious, error-prone and ubiquitous task of physically
constructing circuits on a breadboard by plugging in compo
nents and wires. Our formative study documents key prob
lems with both the schematic and pictorial circuit diagrams
used as source material in this task. Specifically, makers find
schematics hard to accurately translate into valid circuit lay
outs, while pictorial circuit diagrams are inflexible and makers
report frequently, and confusingly, diverging from the depicted
arrangements.

Based on these outcomes, we designed SchemaBoard, a sys
tem that facilitates rapid and accurate construction and ex
amination of breadboard layouts while maintaining support
for intentional user customization. SchemaBoard achieves
this by generating and maintaining editable circuit layouts
from schematics and using lighting patterns shown directly
on a custom LED back-lit breadboard to visualize correct
component placements (or specific nets) in response to direct
input by users. This makes the mapping between the abstract

schematic source material and the physical breadboard lay
out precise, clear and explicit. Furthermore, it is compatible
with both user- and system-driven (guide mode) placement
of components. Our user evaluation provides evidence that
SchemaBoard achieves its goals. Both novice and expert users
appreciated SchemaBoard’s simplicity, and valued completing
significantly more circuits in less time and while experiencing
reduced workload and increased self confidence.

Despite these positives, some participants were concerned that,
due to the high level of support Schemaboard provides, they
might successfully use schematics to construct circuits without
ever understanding them. While similar comments could be
levied at almost any tool, these worries do highlight the multi
faceted nature of the aid provided by Schemaboard: it both
lays out a circuit and then provides detailed instructions for
how to assemble it accurately. While this is doubtless highly
efficient, a factor strongly appreciated by participants, it is also
highly automated and leaves little scope for the types of deep
engagement in a task that might best support learning. To make
Schemaboard more suitable for learning environments, we
suggest that its different features could be selectively enabled—
for example, novices seeking to improve their skills in reading
a schematic and laying out a circuit could manually perform
this task and use Schemaboard to provide feedback only during
assembly. This would help ensure the constructed circuit
accurately follows their design and reduce cases where layout
design errors (the learner’s current focus) are confusingly
compounded with assembly errors. Equally, Schemaboard’s
layout engine could be used without assembly feedback to help
a learner improve their skills in schematic circuit design and
bespoke breadboard construction without worrying that the
specific layout they are building contains errors. In the future,
we see value in studying the different features of Schemaboard
separately in order to clearly determine both their individual
benefits (e.g., in comparison to other techniques for marking
breadboard rows such as simple print labels) and also how they
can be used to best scaffold learning. While using the full set
of features, as in the current study, likely maximizes efficiency
(for all) and accessibility (for novices), Schemaboard may also
be suitable for a wider range of tasks and users if appropriately
customized.

Furthermore, despite its utility, the current prototype also has
clear opportunities for technical improvement. Future itera
tions of the system will use full-size breadboards and RGB
LEDs with multiple blinking patterns to convey more infor
mation about specific nets or components. It would be also

9

possible to place an LED at each hole of the breadboard to
indicate specific positions within the rows for more detailed in
structions. In terms of software, we aim to support schematics
with multiple pages and from different software suites beside
Kicad. Future work will also increase the size of supporting
electronic components. Finally, we also seek opportunities to
improve the automatic layout of components on breadboard,
and development of interaction techniques that can enhance
support for the user’s manual placement of physical compo
nents in arbitrary locations. These enhancements will expand
the scope of the current SchemaBoard system and provide
support for makers working on the broadest possible set of
projects.

ACKNOWLEDGMENT
This work was supported by the National Research Foundation
of Korea(NRF) grant funded by the Korea government(MSIT)
(No. 2020R1A2C1012233).

REFERENCES
[1] Fraser Anderson, Tovi Grossman, and George

Fitzmaurice. 2017. Trigger-Action-Circuits: Leveraging
Generative Design to Enable Novices to Design and
Build Circuitry. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’17). ACM, New York, NY, USA, 331–342. DOI:
http://dx.doi.org/10.1145/3126594.3126637

[8] Josh Urban Davis, Jun Gong, Yunxin Sun, Parmit
Chilana, and Xing-Dong Yang. 2019. CircuitStyle: A
System for Peripherally Reinforcing Best Practices in
Hardware Computing. In Proceedings of the 32nd
Annual ACM Symposium on User Interface Software
and Technology (UIST ’19). Association for Computing
Machinery, New York, NY, USA, 109–120. DOI:
http://dx.doi.org/10.1145/3332165.3347920

[9] Daniel Drew, Julie L. Newcomb, William McGrath,
Filip Maksimovic, David Mellis, and Björn Hartmann.
2016. The Toastboard: Ubiquitous Instrumentation and
Automated Checking of Breadboarded Circuits. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16). ACM,
New York, NY, USA, 677–686. DOI:
http://dx.doi.org/10.1145/2984511.2984566

[10]	 Robert Faludi. 2010. Building wireless sensor networks:
with ZigBee, XBee, arduino, and processing. " O’Reilly
Media, Inc.".

[11] R. A. Fisher. 1922. On the Interpretation of 2 from
Contingency Tables, and the Calculation of P. Journal of
the Royal Statistical Society 85, 1 (1922), 87–94.
http://www.jstor.org/stable/2340521

[12] Sandra G Hart. 1986. NASA Task load Index (TLX).
Volume 1.0; Paper and pencil package. (1986).

[2]	 Ayah Bdeir. 2009. Electronics As Material: LittleBits. In
Proceedings of the 3rd International Conference on
Tangible and Embedded Interaction (TEI ’09). ACM,
New York, NY, USA, 397–400. DOI:
http://dx.doi.org/10.1145/1517664.1517743

[3] Andrea Bellucci, Alberto Ruiz, Paloma Díaz, and
Igancio Aedo. 2018. Investigating Augmented Reality
Support for Novice Users in Circuit Prototyping. In
Proceedings of the 2018 International Conference on
Advanced Visual Interfaces (AVI ’18). Association for
Computing Machinery, New York, NY, USA, Article
Article 35, 5 pages. DOI:
http://dx.doi.org/10.1145/3206505.3206508

[4]	 Tracey Booth, Simone Stumpf, Jon Bird, and Sara Jones.
2016. Crossed wires: Investigating the problems of
end-user developers in a physical computing task. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. ACM, New York, NY,
USA, 3485–3497.

[5] Thomas Brühlmann. 2019. Arduino: Praxiseinstieg.
MITP-Verlags GmbH & Co. KG.

[6] Alvaro Cassinelli and Daniel Saakes. 2017. Data Flow,
Spatial Physical Computing. In Proceedings of the
Eleventh International Conference on Tangible,
Embedded, and Embodied Interaction. ACM, New York,
NY, USA, 253–259.

[7] Deborah R Compeau and Christopher A Higgins. 1995.
Computer self-efficacy: Development of a measure and
initial test. MIS quarterly (1995), 189–211.

[13] Fredrik Jansson and Charles Platt. 2014. Encyclopedia
of Electronic Components; Volume 2: LEDs, LCDs,
Audio, Thyristors, Digital Logic, and Amplification.
Maker Media.

[14]	 Yoonji Kim, Youngkyung Choi, Daye Kang, Minkyeong
Lee, Tek-Jin Nam, and Andrea Bianchi. 2019a.
HeyTeddy: Conversational Test-Driven Development for
Physical Computing. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 3, 4, Article Article 139
(Dec. 2019), 21 pages. DOI:
http://dx.doi.org/10.1145/3369838

[15] Yoonji Kim, Youngkyung Choi, Hyein Lee, Geehyuk
Lee, and Andrea Bianchi. 2019b. VirtualComponent: A
Mixed-Reality Tool for Designing and Tuning
Breadboarded Circuits. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems
(CHI ’19). ACM, New York, NY, USA, Article 177, 13
pages. DOI:http://dx.doi.org/10.1145/3290605.3300407

[16]	 André Knörig, Reto Wettach, and Jonathan Cohen. 2009.
Fritzing: A Tool for Advancing Electronic Prototyping
for Designers. In Proceedings of the 3rd International
Conference on Tangible and Embedded Interaction (TEI
’09). ACM, New York, NY, USA, 351–358. DOI:
http://dx.doi.org/10.1145/1517664.1517735

[17] Richard Lin, Rohit Ramesh, Antonio Iannopollo,
Alberto Sangiovanni Vincentelli, Prabal Dutta, Elad
Alon, and Björn Hartmann. 2019. Beyond Schematic
Capture: Meaningful Abstractions for Better Electronics
Design Tools. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems.
ACM, New York, NY, USA, 283.

10

http://dx.doi.org/10.1145/3126594.3126637
http://dx.doi.org/10.1145/1517664.1517743
http://dx.doi.org/10.1145/3206505.3206508
http://dx.doi.org/10.1145/3332165.3347920
http://dx.doi.org/10.1145/2984511.2984566
http://www.jstor.org/stable/2340521
http://dx.doi.org/10.1145/3369838
http://dx.doi.org/10.1145/3290605.3300407
http://dx.doi.org/10.1145/1517664.1517735

[18] Jo-Yu Lo, Da-Yuan Huang, Tzu-Sheng Kuo, Chen-Kuo
Sun, Jun Gong, Teddy Seyed, Xing-Dong Yang, and
Bing-Yu Chen. 2019. AutoFritz: Autocomplete for
Prototyping Virtual Breadboard Circuits. In Proceedings
of the 2019 CHI Conference on Human Factors in
Computing Systems. ACM, New York, NY, USA, 403.

[19] Will McGrath, Daniel Drew, Jeremy Warner, Majeed
Kazemitabaar, Mitchell Karchemsky, David Mellis, and
Björn Hartmann. 2017. Bifröst: Visualizing and
checking behavior of embedded systems across
hardware and software. In Proceedings of the 30th
Annual ACM Symposium on User Interface Software
and Technology. ACM, New York, NY, USA, 299–310.

[20] Michael McRoberts. 2013. Beginning Arduino. Apress.

[21] David A Mellis, Leah Buechley, Mitchel Resnick, and
Björn Hartmann. 2016. Engaging amateurs in the design,
fabrication, and assembly of electronic devices. In
Proceedings of the 2016 ACM Conference on Designing
Interactive Systems. ACM, New York, NY, USA,
1270–1281.

[22] Yoichi Ochiai. 2010. The Visible Electricity Device:
Visible Breadboard. In ACM SIGGRAPH 2010 Posters
(SIGGRAPH ’10). ACM, New York, NY, USA, Article
98, 1 pages. DOI:
http://dx.doi.org/10.1145/1836845.1836950

[23] Joel Sadler, Kevin Durfee, Lauren Shluzas, and Paulo
Blikstein. 2015. Bloctopus: A novice modular sensor
system for playful prototyping. In Proceedings of the
ninth international conference on tangible, embedded,
and embodied interaction. ACM, New York, NY, USA,
347–354.

[24] Canadian Standard. 1975. Graphic Symbols for
Electrical and Electronics Diagrams. (1975).

[25] Evan Strasnick, Maneesh Agrawala, and Sean Follmer.
2017. Scanalog: Interactive design and debugging of
analog circuits with programmable hardware. In
Proceedings of the 30th Annual ACM Symposium on

User Interface Software and Technology. ACM, New
York, NY, USA, 321–330.

[26] Chiuan Wang, Hsuan-Ming Yeh, Bryan Wang, Te-Yen
Wu, Hsin-Ruey Tsai, Rong-Hao Liang, Yi-Ping Hung,
and Mike Y. Chen. 2016. CircuitStack: Supporting
Rapid Prototyping and Evolution of Electronic Circuits.
In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16). ACM,
New York, NY, USA, 687–695. DOI:
http://dx.doi.org/10.1145/2984511.2984527

[27] Jeremy Warner, Ben Lafreniere, George Fitzmaurice,
and Tovi Grossman. 2018. ElectroTutor: Test-Driven
Physical Computing Tutorials. In Proceedings of the
31st Annual ACM Symposium on User Interface
Software and Technology (UIST ’18). ACM, New York,
NY, USA, 435–446. DOI:
http://dx.doi.org/10.1145/3242587.3242591

[28] Thomas G Wilson. 1988. Life after the schematic: The
impact of circuit operation on the physical realization of
electronic power supplies. Proc. IEEE 76, 4 (1988),
325–334.

[29]	 Te-Yen Wu, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen,
Pin-Sung Ku, Ming-Wei Hsu, Jun-You Liu, Yu-Chih Lin,
and Mike Y. Chen. 2017a. CurrentViz: Sensing and
Visualizing Electric Current Flows of Breadboarded
Circuits. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’17). ACM, New York, NY, USA, 343–349. DOI:
http://dx.doi.org/10.1145/3126594.3126646

[30] Te-Yen Wu, Bryan Wang, Jiun-Yu Lee, Hao-Ping Shen,
Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku, Ming-Wei
Hsu, Yu-Chih Lin, and Mike Y. Chen. 2017b.
CircuitSense: Automatic Sensing of Physical Circuits
and Generation of Virtual Circuits to Support Software
Tools.. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’17). ACM, New York, NY, USA, 311–319. DOI:
http://dx.doi.org/10.1145/3126594.3126634

11

http://dx.doi.org/10.1145/1836845.1836950
http://dx.doi.org/10.1145/2984511.2984527
http://dx.doi.org/10.1145/3242587.3242591
http://dx.doi.org/10.1145/3126594.3126646
http://dx.doi.org/10.1145/3126594.3126634

	Introduction
	Related work
	Tools for circuit construction
	Circuit inspection and augmented breadboards

	Formative study
	Results

	SchemaBoard system overview
	Implementation
	Hardware
	Software

	Evaluation study
	Quantitative Results
	Qualitative Results from Interviews

	Discussion and Limitations
	ACKNOWLEDGMENT
	References

