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ABSTRACT
Small smartwatch touchscreens restrict input and researchers have
long explored how alternative modalities and techniques can en-
able new possibilities and boost expressiveness. However, these
techniques are generally designed in and for static, stable settings;
mobility issues are rarely considered. To address this omission, we
conducted a mobility study that compares two recently proposed
alternative smartwatch input modalities: physical movements of
a watch on the wrist, and an offset touch sensor on the edge of
the device. We observed high selection errors for tilt input (23.89%
to 34.22%) and prolonged times for offset sensing (>1000ms). We
propose a combined input technique designed to fit the constraints
of mobile watch use: touches to the device edge stabilize and con-
strain input, while tilt and touch control and trigger it. A second
study shows this design can improve target selection time while
mobile to less than 800ms with error rates of 10.2%.
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1 INTRODUCTION
Smartwatches provide a novel context for input: tiny screens [10]
within touchable [8], twist-able bodies [17] all attached to the highly
mobile wrist [13]. Based on sensing systems as diverse as tomo-
graphic scanning of the inner structure of the arm [20], range find-
ers that track hand angle [5], bespoke touch sensors integrated into
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device edges [8] or straps [11] and simple on-board inertial motion
units [18], researchers have explored how to exploit the specifics
of the wrist-mounted context to support a broad range of input
and interaction tasks. These include staples such as pointing [19]
through hand pose or gesture recognition [16], to complex, pro-
longed activities such as text entry [4]. Taken together, this body of
work highlights the fact that, despite their diminutive size, careful
design and clever implementation can yield expressive and effective
smartwatch input techniques via a wide range of non-traditional
means.

While this diversity showcases the potential of developing inno-
vative input techniques for the watch form-factor, it is currently
lacking in its treatment of mobility – in assessing whether the pro-
posed techniques can be used in real world situations in which users
are engaged in common tasks such as walking [7]. In such settings,
input performance typically declines and careful design is required
to mitigate these losses [12]. Initial work to assess performance
with watches while mobile is now emerging but, to date, it has fo-
cused on traditional touch-screen input tasks and either cataloged
performance in key mobile contexts [3] or contributed guidance for
effective watch input technique design for mobility [14]. While this
work is valuable, we note that little attention has been devoted to
how effective novel smartwatch input techniques are when users
are actually mobile.

This paper starts to address this issue. It re-implements two re-
cently proposed non touchscreen based interaction techniques for
watches, one based on the idea of touches to the edge or side of a
watch case [2, 8], the other based on tilting the watch body [17–
19]. These techniques were selected as they involve touching or
gripping the watch, stable contacts that may make them inherently
suitable for mobile use. We then evaluate performance using these
techniques in a mobility study involving participants both standing
and walking. These techniques have not previously been examined
in these contexts. The results show high error rates for tilt input
that increase substantially while walking (19.66% to 29.48%) and
prolonged times for offset sensing (>1000ms). Building on these
findings, we propose two variants of a novel interaction technique
that combines the beneficial properties of these input styles and
evaluate them in a follow up study. The result show improvements
in error rate compared to tilt input (8.8% to 17.5%) and time com-
pared to offset sensing input (767 to 885 ms).

The contributions of this paper include: 1) the first study of
non-traditional, non-touchscreen smartwatch input in a mobility
scenario; 2) a novel interaction technique design that builds on the
results of this study and; 3) a validation of this design in a follow
up study. The goal of this paper is to reflect on whether the diverse,
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creative techniques for smartwatch input proposed in the Human-
Computer Interaction research community are practical and viable
for use in real user settings – to provide a first examination of how
representative examples of these techniques hold up in a mobile
context.

2 RELATEDWORK
The emergence of consumer wearable devices in the last decade
has resulted in a large and growing research literature detailing
specialized interaction techniques that meet the requirements of
their unique and restricted contexts. Smartwatches are no exception
and numerous authors have proposed techniques to enhance watch
touch screen use by, for example, optimizing tapping or stroking
for tasks such as typing [15] or by exploring how temporally [9]
or spatially [6] separated taps can be leveraged to support rapidly
issuing commands. A related approach has been to expand input
possibilities by developing additional touch surfaces, such as on
the strap [11] or edge [8] of a watch. Touches to these surfaces can
also be combined with traditional touchscreen inputs to increase
input bandwidth, as in Ahn et al. [1]’s watch text entry system in
which taps to the side of device select different sub-regions of a
keyboard to be shown on the screen, thus enabling larger and more
usable keys.

Other researchers have sought to leverage the wearable context
to design motion sensitive systems for smartwatch input. These
include systems that feature trackers capable of detecting body
movement, such as the angle of the wrist [4] or simpler approaches
that just rely on overt movements of the watch itself captured by
bespoke [17] or built-in [18] motion sensors. This work leverages
the fact that a watch is readily graspable and typically loosely
attached to the body – it can be gripped and twisted, turned or
tilted with relative ease. Research suggests these modalities, when
combined with traditional touch screen input for disambiguation,
are sufficiently expressive to support a wide range of interactions
including target selection, parameter adjustment and panning.

We identify both non-traditional touch surfaces (e.g., on a watch
edge) and watch-motion based input as promising candidates for
next generation input techniques on wrist wearables. However,
we note that, in contrast to an emerging body of work that is
consideringmobility issues for standard touchscreenwatch input [3,
14], no prior studies have explored these techniques in realistic
watch use scenarios - situations where a user may be busy, mobile
or otherwise distracted. We identify this as a weakness in the data
describing these new modalities for wearable input and present
the first study examining the performance of these types of non-
traditional watch input in a mobility setting.

3 APPARATUS
We constructed a compact and portable prototype that implements
both inertial tilt input and edge based touch input. The prototype
is shown in Figure 1 and consists of a 3D printed case (composed
of both conductive and non-conductive elements) that contains an
Arduino pro mini (5V/16Mhz), an HC-06 Bluetooth module, two
MPR121 capacitive touch sensor breakout boards (each supporting
12 electrodes), a bespoke PCB that links all components and a
commercial smartwatch: a 1st generation MOTO360 featuring a

HC-06 
Bluetooth Module

Arduino Pro mini

3D Printed 
Main Housing

Conductive 
Touch Pins

PCB

Conductive Screws

3D Printed Strap

MPR121 Capacitive
Touch Modules

(a) (b)

(c)

Figure 1: Offset touch and tilt sensing smartwatch prototype:
(a) exploded view, (b) internals of case (c) worn on the wrist

320 by 290 pixel screen. This device was selected as it is round and
does not feature external lugs, simplifying construction of a fully
touch sensitive surface around its edge. The final dimensions of
this device are 52mm in diameter and 27mm high (compared to
the watch’s 46mm by 11.5mm). The housing is mounted on a 3D
printed flexible watch strap.

Edge based sensing is enabled by 24 3D printed electrodes (Pro-
topasta Conductive PLA) tightly embeddedwithin themain housing
(Ninjatek NinjaFlex) and each bolted to the PCB using M2 screws.
The MPR121 units and Arduino capture raw data from these elec-
trodes by comparing baseline and current readings [8]. Data from
each electrode is then compressed to 4 bits to create full data packets
of 12 bytes in length. These are sent, via serial Bluetooth, directly
to the watch at 30Hz. Tilt based sensing is enabled by the watch’s
built-in IMU, as in prior work [18], at 60 Hz. All software was
written using a modified version of the Processing development
environment that enables compiling for smartwatches.

4 STUDY 1: EXISTING INPUT TECHNIQUES
Using this hardware prototype, we implemented and adapted two
different input techniques from the literature on watch tilt pan-
ning [18] and offset sensing [8]. To facilitate comparison, both tech-
niques were modified in several ways. Firstly, both were designed
to support an identical arrangement of 24 targets: three concentric
rings of eight equally sized (in terms of both angle and radius)
targets – see Figure 2. The tilt panning system mapped changes in
the watch’s orientation during touches to the side of the device to
the position of a cursor at a fixed rate of 11 pixels per degree. To
move the cursor to the edge of the screen therefore required tilting
the watch by 15 degrees. Selection was triggered by releasing the
device edge. This technique and the target selection interface were
inspired by the pressure input technique described by Yeo et al.
[18]. The offset sensing input technique mapped cursor movement
to the direction of a single touch to the watch edge at a speed of
100 pixels per second, or 1.6 seconds to move from the center to
edge of the screen. Selection was again triggered by releasing the
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(a) (b)

Figure 2: Input Techniques: (a) Tilt panning: hold and tilt the
watch to control a cursor. (b) Offset sensing: touch the edge
of watch and a cursor moves towards your finger.

finger. The mappings of tilt and time to cursor displacement were
set during development and informal piloting through a process of
iterative refinement.

Twenty-four participants completed the study (13 male, 11 fe-
male, all right handed and with a mean age of 22.82 (SD: 1.99)).
They were recruited from the local student population and compen-
sated with approximately 10 USD in local currency. They reported
high levels of experience with touch screens (9.33/10) but limited
prior experience with wearable devices (0.9/10). The study followed
a repeated measures design with two independent variables: the
input technique of either tilt panning or offset sensing and the
pose of either standing (in a quiet lab environment) or walking (a
circular route around office corridors at a uniform speed) while
completing tasks. Participants completed these four conditions in a
fully balanced design: one participant completed each of the 24 pos-
sible orders. In each condition, participants completed three blocks
of trials, with each block composed of the full set of 24 possible
target selections delivered in a random order. Participants were
required to complete all trials correctly – in case of errors, trials
were returned to the set of yet to be completed trials in each block.
The first block of trials was discarded as practice, leaving a total of
4608 successful trials (24 by 2 by 4 by 24) for analysis. At the end
of the study, participants were debriefed and given the chance to
comment on the different conditions regarding issues such as the
difficulty or comfort of the tasks.

4.1 Results
We first examined the raw data. Figure 3 depicts selection points
in all trials with blue indicating correct and red showing errors.
This figure suggests that offset sensing solutions allowed more
consistent and reliable angular input – compared to the dispersed
results in the tilt panning technique, selection points are more
clearly banded to the angular centers of the targets. Figure 4 sum-
marizes this data as aggregate performance for time and errors. To
analyze these data we conducted Repeated Measures ANOVA incor-
porating Greenhouse–Geisser corrections to correct for sphericity
violations (where needed) . In addition to the variables of pose
(standing/walking) and input technique (tilt panning/offset sens-
ing) we also included target distance (three levels: inner, middle
or outer ring) as a variable due to the strong impact it exerted on

(a) (b)

Figure 3: Selection points in study 1 from (a) tilt panning (b)
offset sensing input conditions
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Figure 4: Mean task time and error rates from study 1. Bars
show standard deviation.

performance. Table 1 summarizes the statistical results. As the vari-
ables are either binary (pose, input) or the interactions the main
focus of interest (distance and another variable) we opted not to
conduct post-hoc testing.

Participants’ comments in the debrief echoed the objective re-
sults. Eleven mentioned that tilt panning while walking was chal-
lenging, perhaps due to there being "too many degrees of freedom"
(P5, P17) or simply the inevitability of making unintentional cursor
movements. The speed at which tilt panning could be performed
was acknowledged (P1, P4) and there was a suggestion it would be
preferred if more constrained (P15, P32). Six participants remarked
offset sensing was "unfamiliar but easy" and that there was little
difference between operating the technique while standing or while
walking (P8). Furthermore, four appreciated that touches to the
edge of the device did not obscure the screen.

4.2 Discussion
The results show clear differences, and substantial effect sizes, in
both time and errors. The main effects of input indicate that tilt
panning was faster than offset sensing but led to an increased error
rate; the main effects of pose show a surprising reduction in task
timewhile walking and an expected increase in error rates. Based on
comments from several participants highlighting an increased sense
of urgency in the walking condition, we attribute these changes to a
speed/accuracy trade-off – in the walking condition, instabilities in

Session 1: Emerging Applications and Systems for Wearables  WearSys ’19, June 21, 2019, Seoul, Korea

7



WearSys’19, June 21, 2019, Seoul, Republic of Korea H. Kim, M. Kim, and I. Oakley

Measure Variable(s) F-value P-value η2p

Task Time

Input F(1,23) = 60.04 <.0001 0.723
Pose F(1,23) = 65.858 <.0001 0.741
Dist F(1.98,45.5) = 225.2 <.0001 0.907
Input X Pose F(1,23) = 2.379 0.137 0.094
Pose X Dist F(1.98,45.5) = 5.05 0.011 0.180
Dist X Input F(1.96,45.1) = 137.79 <.0001 0.855

Error Rate

Input F(1,23) = 1807 <.0001 0.987
Pose F(1,23) = 156.5 <.0001 0.872
Dist F(1.58,36.34) = 190 <.0001 0.892
Input X Pose F(1,23) = 32.71 <.0001 0.587
Pose X Dist F(1.86,42.78) = 56.02 <.0001 0.709
Dist X Input F(1.46,33.6) = 99.7 <.0001 0.813

Table 1: RM-ANOVA results from Study 1 for all main and
interaction effects for input technique, pose and target dis-
tance
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Figure 5: Interaction plots in study 1: a) task time (Input by
Distance) and b) error rate (Input by Distance)

performance of prolonged tasks led to an increased desire for speed
which, in turn, contributed to greater error rates. The input by pose
interaction in errors is due to the offset sensing input technique
being more resilient to the change in pose from standing to walking
– the increase in errors for offset sensing is smaller than for tilt
panning.

The main effects of distance simply represent the increased chal-
lenge of reaching further targets. The interactions with this variable
(Figure 5) show two trends. Firstly, error rates between the two
techniques converge in the edge targets. This reflects the fact that
these targets could be selected by points on the boundary of the
possible cursor input space – in Fitts’ law parlance, the edge targets

were infinitely deep. Secondly, in terms of time, the interaction indi-
cates a reversal: offset sensing is most rapid for selections on inner
targets and tilt panning most rapid for selections on outer targets.
This reflects a fundamental difference in the way the techniques
worked – for center targets offset sensing demanded a rapid tap
and release, while for edge targets participants held down their
finger while the cursor moved to the edge at a fixed velocity. For
tilt panning, cursor position depended on entirely small changes
in watch orientation, meaning no such linear effect was present in
the task completion time.

Its worth comparing the current data to prior accounts. There
are close similarities: task times and error rates for a prior study
of offset sensing with 24 targets, albeit in a different spatial ar-
rangement, are 1386ms and 5.4% [8], broadly similar to data from
the standing condition in the present study. There are also differ-
ences: prior work on tilt input has relied on dwell selection and
reported substantially longer (2.1 to 2.6 seconds) and more accurate
input (0.2% to 1.6% errors) [18]. The difference between dwell and
lift-off selection mechanisms is likely responsible. Dwell improves
accuracy by not requiring a potentially unstable finger lift action
and, as a consequence, doubles task times. We also note that the
increased stability of dwell would not likely be maintained in an
inherently unstable walking scenario - it would be hard to dwell
via tilt while walking. This highlights the importance of assessing
wearable input techniques in mobile contexts.

5 STUDY 2: NOVEL INPUT TECHNIQUE
We developed a novel input technique to combine the quick task
times of tilt panning with the lower error rates of offset sensing and
reflect participants comments and opinions. The technique requires
a user to touch the side of the watch with two fingers, as in tilt
panning, but constrains cursor movement to a line connecting the
finger touches, thus reflecting the offset touch positions. Actual
movements of the cursor along this line are achieved by tilt panning
the watch with either the zero order tilt-position mapping used in
the first study or a new first order tilt-velocity mapping, in which
a degree of tilt is mapped to a cursor velocity of 10 pixels/second.
The technique has a number of beneficial properties: increased
stability of movement in response to watch tilting (only one degree
of freedom) and reversibility (tilting can move the cursor in either
direction along the line).

We conducted a study of this technique with a new set of 16
participants (11 male, five female, all right-handed, mean age 24.6
(SD: 2.19)), again recruited from the local student body and compen-
sated with approximately 10 USD. Self reported data on experience
with touch screens (9.1/10) and wearables (1.7/10) were similar to
the initial set of participants. The task structure and study design
closely followed the first study with the exception of the use of a
Latin square arrangement to balance the repeated measures condi-
tions (due to the lower number of participants). The input variable
was composed of the tilt-position and tilt-velocity techniques and
we again used both standing and walking poses. After excluding
trials for practice, we retained a total of 3072 trials (24 by 2 by 4 by
16) for analysis.

Session 1: Emerging Applications and Systems for Wearables  WearSys ’19, June 21, 2019, Seoul, Korea

8



A Mobility Evaluation of Tilt Panning and Offset Sensing Smart Watch Input WearSys’19, June 21, 2019, Seoul, Republic of Korea

(a) (b)

Figure 6: Selection points in study 2 from (a) tilt position (b)
tilt velocity
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Figure 7: Mean task time and error rates from study 2. Bars
show standard deviation.

Measure Variable(s) F-value P-value η2p

Task Time

Input F(1,15) = 1.48 0.243 0.090
Pose F(1,15) = 5.523 0.033 0.269
Dist F(1.56,23.4) = 8.792 0.003 0.370
Input X Pose F(1,15) = 13.366 0.002 0.471
Pose X Dist F(1.32,19.8) = 0.295 0.656 0.019
Dist X Input F(1.29,19.3) = 2.851 0.099 0.160

Error Rate

Input F(1,15) = 59.897 <.0001 0.800
Pose F(1,15) = 119.32 <.0001 0.888
Dist F(1.72,25.8) = 50.195 <.0001 0.770
Input X Pose F(1,15) = 12.433 0.003 0.453
Pose X Dist F(1.76,26.4) = 40.873 <.0001 0.732
Dist X Input F(1.34,20.1) = 0.177 0.751 0.012

Table 2: RM-ANOVA results from Study 2 for all main and
interaction effects for input, pose and distance

5.1 Results and Discussion
We again examined the raw data. Figure 6 shows selection points
in all trials with blue indicating correct and red showing errors.
Selection points are aligned reasonably well to the center of targets,
as in the offset sensing technique in study 1, and there are no
clear differences between the plots. This figure suggests that the
combined input technique achieved consistent and reliable angular
input in both its tilt position and tilt velocity variants.

Summary data are shown in Figure 7 and the results of statistical
testing in Table 2. The key result in task time is the interaction
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Figure 8: Interaction plots in study 2: a) task time (Input by
Pose) and b) error rate (Input by Pose)

between input and pose (see also Figure 8) that indicates that while
the tilt-position technique performs stably across the standing and
walking poses, the tilt-velocity technique, like the techniques in
the first study, is slower while standing than while walking. The
interaction in the error data shows the opposite trend: tilt-velocity
is fairly static, while tilt-position shows a substantial increase in
errors during walking. In comparison to data from study 1, task
completion times are generally reduced while error rates show
modest increases compared to offset sensing (and substantial im-
provements over tilt panning). We interpret these outcomes to
suggest our revised techniques represent a meaningful compromise
in performance between the two extremes examined in study 1.
Comments from the participants provide supportive evidence for
this – half (eight) commented on the learning curve required to
use the technique, but that it was ultimately "highly adjustable" or
precise. Three explicitly mentioned the line constraint increased the
stability of their input. We also note that closer similarity between
the two input conditions meant target distance had limited impact
on performance: interactions between input/pose and distance have
small effect sizes compared to those observed in study 1.

6 CONCLUSION
This work explores how non-traditional input on watch wearables
performs in realistic conditions such as standing and walking – to
provide a clearer picture of how these novel techniques might work
in real world settings. The initial study shows shortcomings. Due
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to the inherent instability caused by walking, input based on tilt
panning a watch led to a high error rate while input based on offset
sensing was slow. The second study investigated how to combine
these techniques to yield improvements by constraining the rapidly
executed but unstable tilt movements with constraints from the
more stably maintained offset touches. The results indicate it was
partly successful: while we did not formally compare data between
the studies, task performance times were modestly reduced over
both original conditions and the most accurate tilt-velocity condi-
tion offered comparable error rates to the original offset sensing
conditions, particularly in the most challenging walking setting.

Future work should refine our designs, for example by opti-
mizing the mappings between sensor inputs/time and cursor po-
sition/speed. A limitation of this work is that these relationships,
despite attempts to determine reasonable settings, may not be opti-
mal. Indeed, gain values for input devices are often personalized -
allowing customization may result in the best performance. Beyond
this practical detail, we emphasize the importance of evaluating
wearable input techniques in wearable settings. A reliance on lab-
based studies in ideal input environments such as seated at a desk
will likely return results that do not scale or apply to real world
wearable use scenarios. Just as recent work has started to exam-
ine this issue for standard touchscreen input [3, 14], this paper
highlights the importance of considering mobility in studies of non-
traditional input techniques involving alternative touch surfaces or
device motion. We contribute the first work to assess this issue and
show how careful designs can adapt promising techniques to the
challenges of mobile use.
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