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ABSTRACT 
Location prediction enables us to use a person’s mobility 
history to realize various applications such as efficient 
temperature control, opportunistic meeting support, and 
automated receptionists. Indoor location prediction is a 
challenging problem, particularly due to a high density of 
possible locations and short transition distances between 
these locations. In this paper we present Indoor-ALPS, an 
Adaptive Indoor Location Prediction System that uses 
temporal-spatial features to create individual daily models 
for the prediction of when a user will leave their current 
location (transition time) and the next location she will 
transition to. We tested Indoor-ALPS on the Augsburg 
Indoor Location Tracking Benchmark and compared our 
approach to the best performing temporal-spatial mobility 
prediction algorithm, Prediction by Partial Match (PPM). 
Our results show that Indoor-ALPS improves the temporal-
spatial prediction accuracy over PPM for look-aheads up to 
90 minutes by 6.2%, and for up to 30 minute look-aheads 
by 10.7%. These results demonstrate that Indoor-ALPS can 
be used to support a wide variety of indoor mobility 
prediction-based applications. 
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INTRODUCTION 
The ability to capture people’s location within large and 
complex indoor spaces (such as office buildings, university 
campus buildings, or hospitals) and to use this information 
to predict when and where they will go next is a powerful 
computational tool. Indoor location prediction algorithms 
could enable smarter automated receptionists [5] that could 
help visitors know when a building occupant is likely to 
return to her office, or arrange ad-hoc meetings whilst 
occupants are transitioning between locations [13].  

However, predicting occupant indoor locations and when 
occupants will transition between these locations is 
challenging. Existing systems that monolithically approach 
this task, combining a prediction of where a user will go 
with one of when they will go there, perform poorly with 
prediction results that are close to the performance of a 
majority predictor (i.e., predicting that the occupant will 
always stay in his most frequented location) [3,19]. This is 
likely because occupants’ routines within the interior of a 
building, such as a workspace, can be very complex. They 
can change substantially from weekday to weekday, and 
encompass numerous destinations and transitions in 
relatively short spans of time.  

To simplify this problem, most prior work has focused on 
predicting an occupant’s next location without taking into 
account when these transitions will take place 
[12,14,15,22,23]. Solving this problem alone precludes 
many applications that rely on knowledge about transition 
timings. For example, a system that proactively heats a 
room in advance of an occupant’s arrival [20] would not 
know whether the person was coming in 5 minutes or 2 
hours, and could result in either significant discomfort (if 
heated too late), or significant wasted energy (if heated too 
early). 

One factor that makes it difficult to accurately predict an 
occupant’s transition time into a space is the fact that indoor 
routes are typically short (meters to hundreds of meters) 
and traversed rapidly (in seconds to minutes). This is in 
contrast to the problem of outdoor location prediction (e.g., 
[9,24]), for which travel times and distances are long 
enough that a useful prediction algorithm only needs to 
predict the next significant location after the user has 
already departed. This allows the use of features such as the 
currently traversed path to make predictions, which are 
mostly not useful to applications of indoor prediction, due 
to the shorter indoor transition times. This also means that 
many of the analytic techniques that perform well outdoors 
are inappropriate, or simply do not work well, when applied 
to indoor scenarios. 

Making exact predictions about when a person transitions is 
a hard problem due to the variability in length of stay at a 
location. How long a person stays at a given location is 
dependent on their temporal-spatial routine and can vary 
greatly from weekday to weekday and fluctuates depending 

Permission to make digital or hard copies of all or part of this work for personal or classroom use is 
granted without fee provided that copies are not made or distributed for profit or commercial 
advantage and that copies bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than the author(s) must be honored. Abstracting with 
credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org. 
UbiComp’14, September 13-17, 2014, Seattle, WA, USA  
Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM 978-1-4503-2968-2/14/09…$15.00. 
http://dx.doi.org/10.1145/2632048.2632069 

171

UBICOMP '14, SEPTEMBER 13 - 17, 2014, SEATTLE, WA, USA



 

on prior events that occur during a day. Considering the 
difficulty of this problem, even given its importance for 
different applications, we instead focus on an important 
sub-problem: predicting if an occupant will stay at their 
current location for a specified time frame and (if they are 
predicted not to stay) predicting the indoor location they 
will transition to within that time frame. We chose this 
problem because it is complex, including both temporal and 
spatial prediction aspects, and it is powerful enough to 
allow us to support a large class of compelling applications. 

For example, with our proposed predictor, we could build 
an application that would allow you to more easily have ad-
hoc meetings with co-workers [13], by knowing if they 
were going to be in their current location for at least the 
next 20 minutes. We could also improve automated 
receptionists like Roboceptionist [5] that can tell visitors if 
an office occupant will return to her office within the next 
ten minutes. Furthermore, we could enable smarter building 
control systems capable of optimizing energy consumption 
based on occupants’ movement patterns (e.g., by realizing 
zoned predictive temperature control) [20]. Such systems 
could minimize operational costs while also limiting the 
impact on occupant comfort [11]. Finally, with a prediction 
that an office worker is leaving within 30 minutes, a 
notification system could issue a warning that traffic is 
especially bad and that she should leave early to arrive at 
her destination on time.  

To support these and other similar applications, we propose 
a novel temporal-spatial indoor location prediction 
algorithm called Indoor Adaptive Location Prediction 
System (Indoor-ALPS). Indoor-ALPS tackles the challenge 
of accurate temporal and spatial prediction by splitting the 
problem into two separate steps: 1) For a given time 
interval, Indoor-ALPS predicts whether an occupant will 
stay in her space for at least that long and 2) for a given 
location, Indoor-ALPS predicts the next location she will 
transition to. The algorithm then combines these two 
independent predictions. It first predicts whether or not an 
occupant will stay at a location for at least a given time 
window and then predicts her destination. Unlike previous 
approaches that perform these two steps simultaneously, 
Indoor-ALPS’s decomposition of the problem allows it to 
learn which contextual features are the best predictors for 
the individual temporal and spatial problems. We argue that 
dividing the problem in this way will lead to improved 
prediction performance. 

To verify this claim, we compared Indoor-ALPS to 
Prediction by Partial Match (PPM), a state of the art indoor 
location prediction algorithm [3]. We evaluated our 
approach using a range of time windows from 10 to 90 
minutes, in an effort to show its applicability for different 
applications. Our analysis showed that Indoor-ALPS 
improved the overall prediction accuracy by 6.2% over 
PPM. Indoor-ALPS was particularly strong when 
considering temporal look-aheads of 10 to 30 minutes, 

when it led to a significant mean accuracy improvement of 
10.7% with a maximum improvement of 12.9%. This paper 
presents two contributions: the first contribution is a new 
algorithm that addresses the temporal aspect of the indoor 
location prediction problem and the second contribution is a 
hybrid algorithm that addresses the combined problem of 
when will an occupant transition and to where. With this 
prediction algorithm, a number of compelling applications 
that rely on indoor mobility prediction can be supported. 

RELATED WORK 
Indoor location prediction most commonly focuses on the 
problem of predicting where a person will go next. To make 
such a prediction, we must define a set of significant 
locations. A location is considered significant if a person 
frequently spends at least ten minutes at that location [1]. 
Because of the short distances between significant locations 
(many buildings can be traversed in about five minutes), it 
is necessary to predict where a person will go next before 
they start moving. This prevents us from using algorithms 
that have been successful in outdoor settings, which make 
predictions based on the current path an occupant is 
traversing [9,24]. It also increases the difficulty of the 
prediction problem, because ideally we will want to predict 
not only where the occupant is going next but also when 
they will go there.   

Given these challenges, prior research has addressed the 
problem of indoor location prediction by concentrating on 
three different prediction sub-tasks: predicting whether a 
specific location will be occupied at a specific time in the 
future (e.g., [20]); predicting where an occupant will go 
next without considering when the transition will occur 
(e.g., [12,14,17,22,23]); and predicting where an occupant 
will be at a specified time (e.g., [3,19]). The majority of 
these algorithms focus on the problem of predicting a 
person’s next location irrespective of time. Even though an 
important problem for many applications, it is also valuable 
to have knowledge about when a person will transition and 
where he will transition to. To our knowledge only two 
algorithms have tackled this latter problem for indoor 
location prediction. Following are the key algorithms that 
attempt to address the three prediction sub-tasks. 

An algorithm solving the task of predicting if an individual 
room will be occupied or not given a certain discrete time 
stamp does not focus on occupant movement or the 
occupancy status of other rooms. One example of such a 
system is PreHeat [20], an occupancy prediction algorithm 
intended for residential use. PreHeat was studied by 
collecting data from five households using RFID tags on 
the occupants’ keychains and predicting when the home (all 
five households) and/or individual rooms (for two of the 
households) would be occupied. The collected data was 
formatted into discrete 15-minute timeslots and the 
algorithm used the partially observed day (up until the 
current timeslot) to identify and retrieve the five most 
similar days (in terms of occupancy) from the history of all 
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prior days. The occupancy of a future timeslot t was 
calculated as a majority vote over the timeslot t of the five 
retrieved days. The median prediction accuracy was above 
80% for the whole-house occupancy prediction. The 
authors also showed that PreHeat tracked the occupancy of 
individual rooms fairly well with only small differences 
between the actual and predicted occupancy. 

An algorithm that predicts users’ next location irrespective 
of time typically takes their current location and location 
history as input to make a prediction about their 
immediately subsequent location. This prediction is done 
irrespective of the current or future time, meaning the 
approach does not attempt to make inferences about when 
the user will transition to the new location. It could be in 
five minutes, in one hour or even longer. Petzold et al. [17] 
analyzed a range of different algorithms for their suitability 
for next place prediction. They compared 7 different 
algorithms: Bayesian network, multi-layer perceptron, 
Elman net, Markov predictor, state predictor, Markov 
predictor with confidence counter, and state predictor with 
confidence counter. They compared the algorithms on the 
basis of criteria such as accuracy, learning and relearning 
speed and cost. They achieved a maximum accuracy of 
79.68% using an Elman Net. Using the two algorithms with 
a confidence counter they were able to achieve a slightly 
higher accuracy of 81%, but only by withholding one-
fourth of the prediction results for which these approaches 
had low confidence. The analysis of the other metrics also 
showed that the higher performance of the best algorithms 
(Elman Net and multilayer perceptron) came at the cost of 
slower learning and relearning speed and high modeling 
overheads. 

Vuong et al. [23] introduced the Adaptive Confidence 
Estimator (ACE) for next location prediction. ACE used a 
confidence counter to express how confident the algorithm 
is with a prediction result. The authors reported an average 
accuracy of 88.57% after withholding about one-fourth of 
the prediction results due to low confidence (similar to the 
Petzold work). Another approach to the next location 
prediction problem is to use neural networks [22]. This 
resulted in an accuracy of 76.4% accuracy, with 92.3% 
accuracy on the binary prediction of whether or not the next 
location will be an individual’s office. 

The task of location prediction given a particular time 
predicts users’ location given a specific time stamp and 
their time-stamped movement history, but does not predict 
when the user transitions. To address this prediction sub-
task, Ryan and Brown [19] used an Association Rule 
Mining approach. Specifically, they were predicting the 
next location given a look-ahead time window. To test their 
approach they used an internally collected dataset as well as 
the Augsburg Indoor Location Tracking Benchmark. Their 
approach achieved an accuracy of up to 79% when 
predicting a user’s location with a look-ahead time of one 
hour on their dataset. However, when applying their 

algorithm to the Augsburg dataset, the accuracy dropped to 
56%. The authors accounted for this drop by explaining that 
their algorithm assumes that a sequence of visited locations 
always occurs at the same time and thus shifts in the time of 
transitions are problematic for the algorithm. 

Another approach to this problem uses a text compression 
algorithm, Prediction by Partial Match (PPM) [3]. PPM 
predicts the most frequent location for a given timestamp 
using only a discrete 10-minute time slot. It does not use the 
temporal distance between the current and future time 
stamp nor the current location or any other additional 
features. It was evaluated on the University of California, 
San Diego Wireless Topology Discovery dataset, a publicly 
available dataset that tracked the indoor movements of 300 
freshmen college students using the university’s Wi-Fi 
access point network. The reported average accuracy for 
PPM on the UCSD dataset was 87%. Since PPM has 
demonstrated the highest reported accuracy on the 
prediction problem we are most interested in, we chose to 
evaluate our approach against it. 

The majority of the effort in location prediction has been on 
addressing next place prediction. As there are a class of 
applications that rely on not only having a prediction of 
where someone will go next but also when she will 
transition, we focus our efforts on this combined temporal-
spatial prediction problem. As described in this section, the 
best performing model, PPM, only uses the prediction time 
slot and a histogram of significant locations. We see an 
opportunity to improve on this work, by leveraging 
additional temporal and spatial information commonly 
available in indoor mobility datasets. 

INDOOR-ALPS: A HYBRID ALGORITHM 
As mentioned in the introduction, Indoor-ALPS splits the 
prediction problem into two independent steps, which it 
later combines. First, for a given time interval, Indoor-
ALPS predicts whether the user will stay for at least that 
long in the current location. Second, for a given location, it 
predicts where the user will go next. Finally, Indoor-ALPS 
combines these predictions.  

More specifically, to make both our spatial and temporal 
predictions for each day, we use the same algorithm 
(independently for each type of prediction). It uses a 
combination of two approaches that can help improve 
classification accuracy: ensemble prediction (training and 
combining results from several classifiers); and incremental 
learning [6] (using each newly recorded data point as part 
of the training dataset after the prediction for that data point 
is completed). The basic algorithm is as follows: 

1. Take all the data in the dataset up until the current 
day (for which prediction is being performed), and 
split it into two non-overlapping data sets: 
optimization and training. 

2. Using this data, identify the best feature-subset for 
each classifier used in the ensemble algorithm: 
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Decision Tree, 3-Nearest Neighbor, Support 
Vector Machine, and Gradient Boost. 

3. Train each of the four classifiers, using their 
feature set tailored to them in Step 2. 

4. Using each classifier, make predictions for the 
current day.    

5. Calculate the ensemble prediction [11] using the 
results of each individual classifier. 

6. Repeat from step 1 until all days in validation set 
are predicted. 

We use a portion of the data for each user to create initial 
models and validate on the remaining data for that user. 
Initially 10 days of data are used and equally split into the 
optimization and training data set. After feature selection 
using the optimization data set, the models for each 
algorithm are created using the training set and predictions 
are performed on the validation day. After the predictions 
are complete for that day, that day’s data is added to either 
the optimization or training data sets. These days of data are 
added in an alternating fashion, first day to the training set, 
next day to the optimization set, and so on, to maintain an 
almost-even split of the data between optimization and 
training.  

Feature Selection 
Predicting if a person stays at a location for a given amount 
of time and where they transition to if they do not stay is 
highly dependent on their temporal-spatial routine. Making 
a temporal or spatial prediction depends on factors such as 
day of week, current location, or even the arrival time at the 
office in the morning. Indoor-ALPS uses ten temporal-
spatial features that capture these influences:  

• Current location (L) 
• Time of arrival at L 
• Minutes passed since arriving at L  
• Current time 
• Current day of the week 
• Arrival time in the building for the current day 
• The number of significant locations the occupant 

visited previously for the current day 
• Previous two significant locations 
• Stay duration at the previous significant location 
• Length of the transition time to the current location 

All times are expressed as discrete ten-minute timeslots 
starting from midnight and significant locations are defined 
as locations in which the occupant frequently stays for at 
least ten minutes [1].  

Since we do not know if all features are equally important 
for each user and situation, our algorithm uses Sequential 
Floating Forward Selection (SFFS) [18] to find the most 
relevant features from the set of ten features. SFFS is a 
greedy algorithm that adds one feature per iteration to the 
already selected feature subset. After each new feature has 
been selected SFFS checks whether a subset of already 
selected features can be removed without decreasing the 

performance. We used an objective function that maximizes 
accuracy. We allowed SFFS to create a feature set 
consisting of between one and ten features based on this 
objective function. Our algorithm applied SFFS 
independently for four different machine-learning 
algorithms: Decision Tree, 3-Nearest Neighbor, Support 
Vector Machine, and Gradient Boost.  

Our algorithm re-evaluates, after each predicted day what is 
the best feature subset for each algorithm. By applying this 
incremental learning approach, the algorithm has the 
opportunity to react to changes in users’ temporal-spatial 
routines. 

The location data used for the prediction is formatted into 
discrete 10-minute time slots, both to make it easier to 
compare our algorithm against previous techniques [3] and 
to keep in line with the definition for a significant location 
[1]. For each stay at a location we interpolated data points 
that represent the current stay duration at a location. For 
example, let us assume that the user arrived at Location A at 
12:50pm and transitioned to Location B at 04:10pm. From 
this recorded data we interpolate the data as follows: 

• 12:50pm Location A; Duration 0 minutes 
• 01:00pm Location A; Duration 10 minutes 
• … 
• 04:00pm Location A; Duration 190 minutes 
• 04:10pm Location B; Duration 0 minutes 

Transition Time Prediction 
In order to predict when a person will transition from one 
location to the next, our algorithm answers the question 
“Will the occupant stay at the current location for the next n 
minutes?” This is realized as a binary prediction with 1 
representing yes and 0 representing no. Recall that the 
algorithm uses an ensemble method. For this prediction, 
this consists of a simple mean of the predictions of the four 
classifiers. If the mean prediction returned by the ensemble 
method >= 0.5, Indoor-ALPS assigns 1 as a prediction 
result, and it assigns 0 otherwise. 

However, as different applications are likely to require 
predictions about different stay durations, we trained 
algorithms and performed predictions for nine specific time 
windows: n = 10, 20, 30, …, 90. This approach can be used 
to predict the time for transitioning from the current 
location. We predict stay duration for successively larger 
times, and for the time t when the ensemble classifier 
returns a 0, we infer that the user will leave only after that 
time. 

Prediction of Next Location 
The prediction of the next significant location works 
similarly to the prediction of the transition time. Again 
using the algorithm described above we ask the question 
“What is the next significant location the user will 
transition to?”. Unlike the binary prediction of staying in 
the current location for a particular time window, here we 
are solving a multiclass problem, where the classes are the 
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set of significant locations. We use the same interpolated 
data we created for the temporal prediction and record the 
next location for each data point. For example in the data 
snippet above, each interpolated data point has Location A 
as the next location. 

For this prediction, our ensemble classifier uses a majority 
voting approach. Each algorithm makes a prediction and the 
most common prediction is used, rather than the average as 
was used with the transition time prediction.  If there is no 
clear majority, we choose the location at random from 
among the predicted locations. 

Temporal-Spatial Prediction 
To use the two independent predictions for temporal and 
spatial prediction we chain them together as follows: first 
we run the temporal prediction to determine if the occupant 
will stay at the current location or not, and secondly, if the 
occupant is predicted to leave, we run the spatial prediction 
to determine where she will transition to. We now describe 
the results from applying our algorithm to a real-world 
dataset. 

INDOOR-ALPS EVALUATION 
In order to evaluate and better understand the performance 
of Indoor-ALPS, we compared it to Prediction by Partial 
Match (PPM) [3], a state of the art algorithm for predicting 
occupancy and location transition. We selected a publicly 
available data set, the Augsburg Indoor Location Tracking 
Benchmark [15] to compare the algorithms. 

Using Prediction by Partial Match as a Benchmark 
Prediction by Partial Match (PPM) [3], to our knowledge, 
has the highest reported accuracy for the task of predicting 
when an occupant transitions from one location to the next 
and where the occupant transitions to. PPM is based on a 1st 
order Markov Model. The input data for this algorithm is 
formatted into 10-minute time slots and for each time slot 
PPM calculates the frequency that each location was 
recorded for that time slot. In order to make a prediction, 
the algorithm takes a time slot as an input and returns the 
location with the highest frequency. 

We used PPM to make both temporal and spatial 
predictions. As we explained previously, PPM takes a 
discrete timestamp and predicts the most frequent location 
for that timestamp. To make temporal predictions, given a 
current time index t and look-ahead window n (to answer 
the question: “Are you staying at this location for the next n 
minutes?”), we query PPM to predict the location for the 
next t+i (i=1,..,n) time slots. If the resulting location for any 
of these n predictions is different from the current one, we 
assign 0 as the result (person is not staying for the next n 
minutes) or 1 otherwise. In order to make spatial 
predictions given a current time index t, we query PPM to 
predict the location for the next t+i (i=1,..,143, 
corresponding to a one-day look-ahead) time slots. The first 
predicted location that is different from the current one is 
returned as the next location. 

Evaluation Data Set 
The Augsburg data set has been used extensively in 
previous attempts to predict location [14,17,19,23]. We 
chose it for our analysis as it enables easier comparison of 
our algorithm to past and future efforts to address indoor 
location prediction. The data set was collected using a smart 
doorplate concept: each user was tracked using an RFID 
card upon entering a space (e.g., office, corridor, kitchen). 
Four university office workers who worked on the same 
floor were tracked for an average of 6.75 weeks (SD=1.71). 
Due to the nature of the data collection, this data set already 
contains distinct locations, thus preprocessing is not needed 
to extract them. However, as we care about significant 
locations [1], we performed a preprocessing step to filter 
out data where the occupant left a room for less then 10 
minutes and returned to the same room. 

Measures 
To give a complete picture of the performance of each 
algorithm, we report on four different performance 
measures: Accuracy, Precision, Recall, and Kappa statistic. 

Accuracy 
The accuracy for an algorithm describes the fraction of 
correct predictions vs. total predictions. We calculated the 
accuracy for each individual user and look-ahead window 
and averaged the resulting values. The accuracy is closely 
tied to the underlying distribution of the different classes, 
meaning a dominant class that is predicted very well will 
raise the overall accuracy. 

Precision and Recall 
Precision and Recall are information retrieval concepts that 
provide an understanding and measure of relevance and it 
quantifies the false positive and false negative errors being 
made by an algorithm. For a given class, Precision 
describes the fraction of data points that are predicted to 
belong to that class and actually belong to that class. Recall, 
on the other hand, describes how many data points that 
belong to a class are actually retrieved. Precision is tied to 
the false positive value and Recall is tied to the false 
negative value. Both precision and recall are calculated on a 
per-class basis for each user in the data set. The overall 
precision and recall for an algorithm on a specific data set is 
calculated by using a weighted average of the class specific 
precision and recall. The number of data points belonging 
to a particular class is used as the weight for this average. 
Where accuracy shows the overall correctness of an 
algorithm, precision and recall tell us how an algorithm 
achieved a certain accuracy value and the kind of errors it 
makes. Depending on the application, false positives or 
false negatives may be more of a concern. 

Kappa Statistic 
The Kappa statistic measures the class-wise agreement 
between actual data and predicted data. For each observed 
class, it calculates how many data points were correctly 
predicted to be in that class and how many data points were 
incorrectly predicted to be in any of the other possible 
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classes. Kappa evaluates how well an algorithm is able to 
predict the individual classes in a dataset independent of the 
class distribution. For example, if an algorithm is very well 
suited to predict the two most common classes, but is 
unable to predict any of the other classes, Kappa would be 
very low. Thus it is possible to have high accuracy, 
precision, and recall values, but a low Kappa. In our 
analysis, we apply the commonly used Landis and Koch 
[10] to interpret our Kappa results. 

RESULTS 
We split the analysis of our proposed approach into three 
parts: temporal, spatial, and combined temporal-spatial. We 
performed a statistical analysis on the accuracy of each 
algorithm. We then report other measures to support the 
discussion about the advantages and limitations of each 
individual algorithm. 

In all of our statistical analysis we used One-way and Two-
way Repeated Measures ANOVAs, as appropriate. We used 
Repeated Measures ANOVAs because algorithms were 
trained on data for each individual user, and the training 
and testing data split for both algorithms was the same. We 
ensured the normality of data using the Shapiro-Wilk test. 
We ran Mauchley’s test for sphericity and performed 
Greenhouse-Geisser correction when the sphericity 
assumption was violated. All post-hoc pair-wise 
comparisons were done using paired t-tests with Bonfferoni 
correction. We report only main effects and p-values in the 
text for succinctness.  

Temporal Analysis 
Different applications require different temporal look-ahead 
windows. For example, the look-ahead window for indoor 
temperature control is based on the average time it takes to 
raise or lower the temperature in a room to a comfortable 
temperature, and this can vary based on the current time of 
day, outside temperature, and position of the room in the 
building (is the room inside of the building, does it have 
windows, etc.). To show how Indoor-ALPS performs under 
different temporal thresholds we report the results for nine 
different look-ahead windows, from a 10-minute to a 90-
minute look-ahead. We compare our results against PPM 
and a 0-R predictor (majority class predictor). 

The ground truth for the temporal prediction is tied to the 
look-ahead window and consists of a series of 0’s and 1’s. 
Given a look-ahead window n and a data point, the ground 
truth for that data point is 1 if the person stays at the current 
location for the next n minutes. If, on the other hand, the 
remaining stay-duration is smaller than n, we assign 0 for 
the ground truth. 

We expect that the 0-R predictor has very high accuracy for 
lower look-ahead windows, since the only instances when 
an occupant is predicted to leave a location is shortly before 
the transition time. This makes the prediction task 
especially difficult for lower thresholds, because there is 
little data available for the leave-class. 

Figure 1 shows the average accuracy across all four users 
for all 9 look-ahead windows by algorithm. Our tests found 
a main effect of the Algorithm on the Accuracy 
(F(1,3.01)=11.56, p=.0422, ηp

2=.79); Indoor-ALPS overall 
mean accuracy of 88.2% was significantly higher than PPM 
(mean=83.6%, p<.0001) and 0-R (mean=83.3%, p<.0001). 
Our tests did not find a significant difference between PPM 
and 0-R (p>.9999). 

Our tests also found a main effect of Look-Ahead on 
Accuracy (F(1.13,3.39)=144.07, p=.0006, ηp

2=.97). As the 
look-ahead increased, the accuracy of all three algorithms 
decreased. This makes sense, as it is harder to predict 
mobility further into the future. Our tests also found simple 
effects of Algorithm on Accuracy for all individual Look-
Aheads. In particular, Indoor-ALPS was significantly more 
accurate than 0-R and PPM at the 10 minute, 20 minute, 30 
minute and 70 minute look-aheads (See Figure 2, p<=0025 
in all cases). 

Thus, Indoor-ALPS performs better overall than PPM and 
0-R, and is especially better for small look-ahead windows 
of 10 to 30 minutes. The average accuracy difference 
between Indoor-ALPS and PPM for the first 3 look-ahead 
windows is 9.2% (SD=2.3%) and 3.9% (SD=0.2%) for the 
higher look-ahead windows. 

Figure 2 shows Precision and Recall for all look-ahead 
windows for Indoor-ALPS as well as PPM. Note by 
definition, 0-R will always have a Recall of 0. We see a 
slight improvement for the Precision of Indoor-ALPS over 
PPM for the first five look-ahead windows after which 
PPM has a slightly higher Precision. For the smaller look-
aheads, PPM makes more false positive errors, i.e., 
predicting that an occupant is staying when they are not. 
For the larger look-aheads, Indoor-ALPS makes more false 
positive errors. However, Indoor-ALPS has a consistently 
higher Recall than PPM with an average Recall across all 
look-aheads of 96.6% (SD=2.1%) for Indoor-ALPS and 
83.6% (SD=2.9%) for PPM. PPM’s lower Recall means 
that it makes more false negative errors, predicting that an 
occupant is leaving a location a lot earlier than they actually 
do. 

Figure 3 shows the Kappa results by look-ahead window 
and algorithm. As expected from the previous Accuracy, 
Precision and Recall results, Indoor-ALPS has higher 
Kappa values for the lower look-ahead windows and 
slightly worse Kappa values for the higher look-ahead 
windows. The Kappa values for PPM increase as the look-
ahead gets larger. It is also of note that the standard 
deviation for the Kappa values is fairly uniform for PPM 
(avg.=0.075, SD=0.013), while the standard deviation 
increases for higher look-ahead windows for Indoor-ALPS 
(avg.=0.087, SD=0.052). In the discussion section, we will 
provide a rationale for why this occurred. 
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Figure 1 Average Accuracy by Look-Ahead Window for 
Temporal Prediction. Starred bars indicate statistically higher 
values (p<=.025). 

 
Figure 2 Average Precision & Recall for Temporal Prediction 

 
Figure 3 Average Kappa for Temporal Prediction 

Spatial Analysis 
In order to evaluate the performance of the spatial or next 
significant location prediction, we again report on the 
Accuracy, Precision, Recall, and Kappa statistic. The 
ground truth for this analysis is the next significant location 
that follows the current location. Figure 4 shows the 
accuracy by user for each algorithm. As we can see, both 
Indoor-ALPS as well as PPM outperform 0-R. The 
accuracies for Indoor-ALPS and PPM are quite similar, 
with PPM outperforming Indoor-ALPS for User 3. Note 
that we cannot run statistical tests on accuracy across our 

users for our spatial analysis as we only have 4 users and 
thus only 4 values per algorithm. We also analyzed 
Precision and Recall (see Figure 5) and found a similar 
picture as with the accuracy. Looking at Kappa (see Figure 
6) the algorithms again have similar performance. We can 
see that both Indoor-ALPS and PPM have a substantial 
agreement between the observed and predicted data for 
users 1 and 2, a moderate agreement for user 3, and Indoor-
ALPS has a slight agreement and PPM has a fair agreement 
for user 4. Overall, we can draw the conclusion that PPM 
offers modest improvements over Indoor-ALPS for users 3 
and 4, and performs similarly for users 1 and 2. 

 
Figure 4 Accuracy by User ID for Spatial Prediction 

 
Figure 5 Precision & Recall by User ID for Spatial Prediction 

 
Figure 6 Kappa by User ID for Spatial Prediction 

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4" 5" 6" 7" 8" 9"
10#Minute*Look#Ahead*Window*

Temporal*Predic;on:*Average*Accuracy*

Indoor2ALPS" PPM" 02R"

*" *" *"
*"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4" 5" 6" 7" 8" 9"
10#Minute*Look#Ahead*Window*

Temporal*Predic;on:**Average*Precision*&*Recall*

Precision"Indoor7ALPS" Precision"PPM" Recall"Indoor7ALPS" Recall"PPM"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4" 5" 6" 7" 8" 9"
10#Minute*Look#Ahead*

Temporal*Predic9on:*Average*Kappa*

Indoor2ALPS" PPM"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4"
User%ID%

Spa+al%Predic+on:%Average%Accuracy%

Indoor2ALPS"Accuracy" PPM"Accuracy" 02R"Accuracy"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4"
User%ID%

Spa+al%Predic+on:%Precision%&%Recall%

Precision"Indoor7ALPS" Precision"PPM" Recall"Indoor7ALPS" Recall"PPM"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4"
User%ID%

Spa+al%Predic+on:%Kappa%

Indoor2ALPS"Kappa" PPM"Kappa"

177

SESSION: INDOOR LOCATION



 

Temporal-Spatial Analysis 
Our algorithm combines the results of the temporal and 
spatial prediction to predict if an occupant will stay at a 
location for a given time duration, and if the occupant is 
predicted to leave, to which location the occupant is 
transitioning. To evaluate the algorithms, we first calculated 
how often they correctly predict that an occupant is staying, 
and when they correctly predict that the occupant is leaving, 
how often they correctly predict the next location. Figure 7 
shows the average prediction accuracy by look-ahead 
window. Note we did not include 0-R in this analysis as the 
results are identical to the temporal 0-R, since 0-R predicts 
that the user is always staying and thus no location 
prediction is performed. 

Our tests found a main effect of Algorithm on Accuracy 
(F(1,3)=65.65, p=.0038, ηp

2=.96), indicating that Indoor-
ALPS (mean=85.3%) overall performs better than PPM 
(mean=79.1%). Our tests also found a main effect of Look-
Ahead on the Accuracy (F(8,24)=66.75, p<.0001, ηp

2=.96), 
but the post-hoc pairwise comparison did not find any 
significant difference between Look-Aheads. 

The analysis of the algorithms and look-ahead windows 
also showed a significant interaction between Algorithm 
and Look-Ahead (F(1.75,5.26)=15.58, p=.0067, ηp

2=.84). 
Again, we only further compare algorithms across different 
look-ahead windows. Indoor-ALPS was significantly more 
accurate than PPM for look-ahead windows of 10 to 80 
minutes (all p<.05) (Figure 7). Our tests only failed to find 
a significant difference for the look-ahead window of 90 
minutes (p=.63). The greatest difference can be observed 
over the first three windows with an average difference of 
10.7% (SD=2.2%), with a maximum improvement of 
12.9%. For the first five windows, it is 9.1% (SD=2.7%). 
This means that combining temporal and spatial prediction 
in Indoor-ALPS is more accurate than PPM overall, and 
although the performance difference gets smaller as the 
look-ahead grows, Indoor-ALPS performs better than PPM 
in almost all look-ahead windows.  

Figure 8 shows the Precision and Recall results for each 
algorithm. We can see that Indoor-ALPS is slightly worse 
on Precision with an average of 0.852 (SD=0.051) 
compared to 0.864 (SD=0.049) for PPM, but it is much 
better for Recall with an average of 0.915 (SD=0.039) for 
Indoor-ALPS and 0.794 (SD=0.010) for PPM. Indoor-
ALPS’ Recall is on average 0.121 (SD=0.032) greater than 
PPM’s Recall, which only slightly changes from one look-
ahead window to the next. The lower Recall indicates that 
PPM leads to more false negatives. 

Compared to PPM, Indoor-ALPS has a higher Kappa (see 
Figure 9) for the lower look-ahead windows and a slightly 
lower Kappa for the higher look-ahead windows. Similar to 
the temporal prediction, the standard deviation for Indoor-
ALPS’ Kappa increases as the look-ahead grows, while the 
standard deviation for PPM’s Kappa is fairly stable with an 
average of 0.051 (SD=0.006). 

 
Figure 7 Average Accuracy by Look-Ahead for Temporal-
Spatial Prediction. Star indicates statistically significant 
difference (p<.05) . 

 
Figure 8 Average Precision & Recall by Look-Ahead Window 
for Temporal-Spatial Prediction. 

 
Figure 9 Average Kappa by Look-Ahead Window for 
Temporal-Spatial Prediction. 

DISCUSSION 
Our performance analysis of Indoor-ALPS compared to 
PPM shows that Indoor-ALPS achieves higher overall 
temporal and temporal-spatial prediction performance. 
Furthermore, Indoor-ALPS performs particularly well for 
the look-ahead time windows of 10 to 30 minutes. 
Especially for our main prediction goal, temporal-spatial, it 
outperforms PPM for all window sizes up to 80 minutes in 
terms of accuracy. This discussion will highlight the 
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advantages and disadvantages of Indoor-ALPS and explain 
why PPM performs better in some cases. We also illustrate 
how Indoor-ALPS can be used in practice in an application. 

Temporal Prediction 
As we described in the results section, Indoor-ALPS 
achieves a very high performance increase over PPM on 
multiple measures for the temporal prediction. This is 
especially true for lower look-ahead windows for which 
Indoor-ALPS had a mean accuracy gain of 7.3% 
(SD=3.1%) over PPM. Furthermore our algorithm also 
improves over 0-R even for lower look-ahead windows for 
which the 0-R accuracy is already very high.  

However, the Kappa results for higher look-ahead windows 
were worse than PPM. As highlighted earlier, we observed 
a higher standard deviation for the higher look-aheads for 
Indoor-ALPS. This indicates that there were significant 
differences in the performance of our algorithm for one or 
more users. Careful analysis of the results shows that user 3 
was responsible for these deviations. In fact, if we remove 
this user from the analysis and recalculate the average 
Kappa for both Indoor-ALPS and PPM for look-ahead 
windows of 50 to 90 minutes, we see that Kappa increases 
by 0.057 for Indoor-ALPS while it only increases by 0.015 
for PPM when compared to the results for all four users. An 
analysis of user 3’s data revealed that in the validation data, 
the user frequently went to two additional new locations, 
which were not present in the initial training data. If we 
analyze the selected features of Indoor-ALPS for each 
validation day and look-ahead window we notice that the 
current location is one of the most frequent features picked 
by the feature selection algorithm. Since the data for these 
new locations is relatively sparse in the training data, our 
algorithm frequently predicts that the occupant stays. Even 
with incremental learning, it takes a while to collect enough 
data about the new location to make accurate predictions. 
This is also reflected in the Precision, which is lower than 
the average precision of users 1, 2, and 4 by 0.055. 

PPM on the other hand is agnostic to the current location 
when it makes a prediction for a given time slot. It only 
uses discrete time to make a prediction. As long as the 
predicted location differs from the current one it will 
predict that the occupant leaves within a given look-ahead 
window. This is why PPM is more robust to changes in a 
person’s routine. For our future work, we plan to extend 
Indoor-ALPS and allow it to react to changes in the user’s 
routine by falling back to a frequency-based model. 

Even without including user 3 in the results we still see that 
Kappa is slightly higher for PPM on look-aheads of 40 to 
70 minutes (average difference of 0.042). This behavior can 
be explained by looking at the Recall for PPM. We see that 
PPM has a much lower Recall, indicating that the algorithm 
very frequently predicts that the user will leave her location 
even if she actually stays (False Negative errors). By doing 
so, it correctly predicts more of the Leave-class, which is 
the minority class in the data set, but at the expense of the 

Stay-class, resulting in a slightly higher Kappa. The slightly 
lower Precision shows that Indoor-ALPS makes the 
opposite errors; when the data shows that the occupant 
leaves within the next n minutes, our algorithm sometimes 
incorrectly predicts that the occupant will stay. 

Spatial Prediction 
The evaluation of the spatial prediction showed that Indoor-
ALPS and PPM outperform 0-R and both achieve 
comparable performance. Only for user 3 we see that PPM 
achieves a higher accuracy than Indoor-ALPS, with a 
difference of 5.9% between the two. The cause for this is 
the same as was described for the temporal prediction for 
user 3.  Since the prediction algorithm uses the current 
location as a feature, it has difficulties with two new 
locations. The locations that are transitioned to when 
leaving these two new locations are very frequented (or 
majority) locations for this user, which is why PPM is 
better able to handle the new situation since it predicts the 
majority location. One potential way to improve the next 
location prediction is by leveraging the temporal prediction 
along with Active Learning. In situations when the 
temporal prediction predicts that the occupant is leaving the 
current location and the prediction is uncertain about the 
most likely next location, it can ask the user for input to 
improve its ability to learn. 

Temporal-Spatial Prediction 
Analyzing the overall performance of the temporal-spatial 
prediction, the task we set out to solve with Indoor-ALPS, 
we can see that our algorithm is significantly more accurate 
than PPM, where it performs much better particularly on 
the lower look-ahead windows. Our proposed algorithm 
addresses the following problem: predicting if an occupant 
will stay at their current location for a specified time frame 
and, if they are predicted to leave, predicting also the indoor 
location they will transition to within that time frame. Our 
algorithm with its high prediction performance can support 
a large class of compelling applications, including proactive 
traffic notifications, proactive heating, automated 
receptionists, and ad-hoc meeting support. We now look in 
detail at how Indoor-ALPS supports proactive heating.  

Using Indoor-ALPS for Proactive Heating 
The importance of the different look-ahead windows is 
dependent on the application context. For example, efficient 
temperature control in domestic environments requires a 
look-ahead of, on average, 60 minutes [8] to change 
temperature by 10°F. In office environments with zoned 
temperature control, the heat-up time is usually smaller due 
to the smaller volume of the space that is heated and 
secondary heating effects from adjacent rooms. A look-
ahead window of 30 minutes is already enough to positively 
affect a building’s overall energy consumption while 
minimizing the impact on the occupant’s thermal comfort. 
Our algorithm is particularly suited to solve this problem.  

Let us assume the HVAC system in a building needs 30 
minutes to change the temperature by 10°F, which requires 
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a 30 minute look-ahead window for knowing if a person 
will transition to a new space. Given a particular location, 
our algorithm would make temporal predictions every 10 
minutes in order to determine if the person is staying at 
their current location for at least 30 minutes. As soon as the 
prediction result changes from yes to no in consecutive 
queries, Indoor-ALPS makes a spatial prediction to identify 
which location to heat up. In this case, the HVAC system 
can be controlled to start increasing the temperature to the 
person’s preferred temperature in advance of his arrival.  

As we saw in the temporal-spatial results, we are not 100% 
accurate in our prediction, which is to be expected. There 
are two possible errors that can occur, which would affect 
the temperature control for the person’s next location: 1) 
the spatial prediction was incorrect and the person is 
heading to a different office or 2) the spatial prediction was 
correct, but the temporal prediction was not. In case of a 
wrong spatial prediction the system would waste energy 
heating the wrong room. In case of a correct temporal 
prediction, heating will start on time or a little bit late, since 
we expect they may leave anytime in the next 30 minutes.  

In the 11.5% of cases where an error occurs, two types are 
possible: predictions that the person will leave when they 
actually do not leave the current location in the next 30 
minutes or the prediction that the person will stay when 
they actually will leave in the next 30 minutes. The 
Precision and Recall results for Indoor-ALPS and PPM 
have shown that Indoor-ALPS is more likely to make the 
latter error, while PPM is more likely to make the former 
error. Thus the primary impact of temporal errors with 
Indoor-ALPS will be a delay in heating.  

We believe that even though our algorithm sometimes starts 
heating too late, it will proactively reduce the energy 
consumption of a building. The errors Indoor-ALPS makes 
might affect the thermal comfort of the occupant, because 
the temperature did not reach the preferred temperature on 
time or in the correct room. The difference from the 
preferred temperature due to slight prediction inaccuracies 
might not even affect the thermal comfort much since the 
system only takes 10 to 15 minutes to recover and someone 
who was just walking is less likely to be cold. Looking at 
the large Recall difference between Indoor-ALPS and PPM 
we can expect that PPM would waste more energy than our 
algorithm and thus Indoor-ALPS would be better suited to 
reducing a building’s energy footprint. 

Following the same prediction model as described above 
another application our algorithm can support is an 
automated receptionist [5]. By predicting that an office 
occupant will remain in her office for a certain amount of 
time or longer, a colleague or visitor can be assured that she 
will be there when they arrive. Here the look-aheads are 
likely to be short, where Indoor-ALPS excels. By predicting 
if the building occupant will arrive at a new location in a 
specified amount of time (or less), we can assure the visitor 
he will meet the occupant if he arrives around that time.  

Combining Temporal and Spatial Predictions with Oracles 
Even though Indoor-ALPS already achieved a very high 
performance, we were interested to see whether we could 
further improve its performance by combining the temporal 
and spatial prediction (i.e., allow the output of one 
prediction become the input for the other). To test this 
approach, we created two Oracle predictors. The Temporal-
Oracle predictor has perfect knowledge about the next 
location of an occupant and uses that knowledge as an input 
feature in the prediction. The Spatial-Oracle, on the other 
hand, has perfect knowledge about if an occupant stays for 
the next n (n=10,…,90) minutes. If either Oracle with 
perfect knowledge (either spatially or temporally) results in 
a significantly improved performance, then we can try 
combining our imperfect predictors. However, when we 
evaluated the use of these Oracles, we found that neither 
one provided an improvement over our original approach. 
Note that this result is true for the Augsburg dataset, and 
may still be worth investigating with a different dataset 
containing different types of mobility patterns. 

CONCLUSION 
In this paper we presented Indoor-ALPS, an Adaptive 
Indoor Location Prediction System, which predicts if a 
person will stay at their current location or if she is 
predicted to leave, to which location she will transition to. 
Its novelty is in treating the temporal and spatial aspects of 
the problem as independent and then combining the results. 
We implemented Indoor-ALPS and tested it on the 
Augsburg Indoor Location Tracking Benchmark against the 
best performing algorithm for this prediction problem, 
Prediction by Partial Match. Our analysis showed that 
Indoor-ALPS improved on the temporal-spatial accuracy by 
6.2% overall, and 10.7% over PPM on lower look-ahead 
windows. These positive results will allow us to realize 
various applications such as zoned temperature control, 
opportunistic meetings, or proactive traffic notifications. 
For future work we plan to evaluate our algorithm on other 
datasets to demonstrate the generalizability of our results. 
In addition we also plan to adopt our temporal prediction 
for other indoor prediction tasks such as room occupancy 
prediction. To improve our algorithm’s performance, we 
plan to explore the integration of frequency-based models 
in situations when the prediction for a partial day is 
consistently wrong for multiple look-aheads. In order to 
make Indoor-ALPS more suitable for long-term deployment 
we plan to include a re-learning rate that allows it to allows 
it discard old data in favor of new data, which will make it 
more robust against changes in a person’s temporal-spatial 
routine. Lastly we plan to evaluate Indoor-ALPS by 
building and deploying the applications that the algorithms 
support. 
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