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ABSTRACT 
Touches between the fingers of an unencumbered hand rep-
resent a ready-to-use, eyes-free and expressive input space 
suitable for interacting with wearable devices such as smart 
glasses or watches. While prior work has focused on touches 
to the inner surface of the hand, touches to the nails, a practical 
site for mounting sensing hardware, have been comparatively 
overlooked. We extend prior implementations of single touch 
sensing nails to a full set of five and explore their potential 
for wearable input. We present design ideas and an input 
space of 144 touches (taps, flicks and swipes) derived from an 
ideation workshop. We complement this with data from two 
studies characterizing the subjective comfort and objective 
characteristics (task time, accuracy) of each touch. We con-
clude by synthesizing this material into a set of 29 viable nail 
touches, assessing their performance in a final study and illus-
trating how they could be used by presenting, and qualitatively 
evaluating, two example applications. 
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INTRODUCTION 
The increasing power and sophistication of wearable de-
vices, such as smartwatches and smart glasses, is enabling 
new applications in areas such as health care [34], educa-
tion/tutoring [15], maintenance [1], and transportation [26]. 
However, the diminutive size and on-body mounting of wear-
ables mean they have very limited surfaces for traditional 
input techniques such as controlling a cursor or touching a 
screen [42]. Existing alternative approaches based on voice-
commands or free-hand gestures compromise social accept-
ability [17] and may lead to fatigue [16] while hand-held 
controllers are awkward to carry and preclude device use dur-
ing hands-busy tasks [32]. These problems mean that although 
wearables are now powerful computational tools, many input 
tasks remain slow, cumbersome and inexpressive. 
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Figure 1. Nailz: five touch sensitive fingernails for wearable input. Left 
shows two close-ups of nail sensors on a hand, while right shows a user 
wearing the system during study tasks. 

Worn devices that sense finger input [31] can offer a solution 
to these problems. It has been demonstrated that specific sub-
sets of finger actions such as making poses [5], gestures [22] 
or touches [18] can be captured with systems worn on the 
wrist [21], finger [3], nail [20] or shoulder [33]. The input 
actions enabled by these systems are generally easily accessi-
ble [44], subtle or inconspicuous (e.g., via micro-gestures [4]) 
and expressive enough to support interaction via pointing, 
cursor control [20] and/or gestures [12]. 

While this work is diverse, limited attention has been devoted 
to input that takes place on the nails. We argue this is an omis-
sion as the nails are a highly appropriate site for input [9] – they 
are easily and comfortably accessible [40] and already com-
monly used as a site for body extension (e.g., with cosmetic 
artificial nails) [37]. Prior work reflecting these motivations 
has introduced touch-sensing thumbnails [20, 23] capable of 
capturing a small set of five gestures [20] or controlling a 
cursor [23]. We extend this work by studying how a full set of 
five touch sensing nails can be used to capture input relating 
to articulation of the hand as a whole. Due to the inherent 
complexity of the hand, we note the design space enabled by 
touches to all the nails will differ substantially from that dis-
cussed in prior work dealing with the touches to inner surfaces 
of the fingers [18, 39]. Furthermore, this space is inevitably 
larger than that possible on a single thumbnail [20], not least 
because it incorporates a novel set of designs based on the 
relationships between, or arrangement of, the different nails. 

Building on these observations, the overarching contribution of 
this paper is the methodical exploration of the design space of 
single-handed multi-nail interaction. This took place in several 
stages. We first conducted a design workshop to generate inter-
face, interaction and application concepts. We then assessed 
the viability of a large set of 144 of the basic input actions 
proposed in two user studies. In the first (N=16), we assessed 
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the subjective comfort of each action. In the second (N=16), 
based on a fully functional prototype system re-implementing 
designs from prior nail systems [20, 23], we captured task 
time and the distinguishability of each input action using a 
simple threshold based classifier. We close by consolidating 
these outcomes into a final set of 29 viable actions, a revised 
personalized classifier (which achieves a mean accuracy of 
94.3%) and a final evaluation (N=10) of both objective per-
formance with the input actions and subjective opinions of 
demonstrators showcasing the system. We note that the data 
generated in each of these studies is novel and represents a 
valuable baseline for future work on single-handed nail and 
finger touch input techniques. 

In sum, this work contributes to the design of new wearable 
input techniques by: 1) proposing the unexplored design space 
of a set of five touch sensitive nails and; 2) by documenting and 
instantiating the input actions and interface designs suitable for 
this system based on 3) a thorough and novel characterization 
of the comfort, time and accuracy of, and subjective response 
to, single-handed multi-nail touch input. 

RELATED WORK 
Wearable input systems based on touches between the fingers 
of the hand have been widely studied due to the fact they 
promise subtle socially acceptable input [17] that can be con-
veniently accessed [44] and operated eyes-free [18] while still 
retaining a large and expressive input space [33]. This is fun-
damentally due to the anatomical complexity of the hand: it is 
reported to have 27 separate Degrees of Freedom (DoFs) [10]. 
The thumb is especially adroit, accounting for five DoFs and 
positioned to access the rest of the hand with relative ease. 
Prior research has leveraged these properties to explore what 
both Whitmire et al. [39] and Soliman et al. [33] term “thumb-
to-finger” input. This refers to systems in which the thumb 
taps [14], force-taps [24], swipes [35] or gestures over regions 
such as the side of the index finger [36] or the inner surfaces of 
all four fingers [18, 45] in order to support tasks such as pro-
viding a secondary input channel during touchscreen use [36], 
issuing commands, changing settings or typing [39]. A com-
mon approach is to treat each finger phalanx and/or joint as a 
different input region by, for example, placing a different com-
mand on each one [18]. Alternatively, with systems capable 
of sensing continuous input, a cursor can be controlled [31] 
or gestures such as letters or shapes can be drawn [45]. Fi-
nally, systems capable of detecting pose can capture full hand 
gestures, such as those involved in sign language [46]. 

There is also some data on human performance during thumb-
to-finger input. For example, Huang et al. [18] capture comfort 
ratings for this type of input and show that while touches of 
the thumb to the inner surfaces of the index and middle finger 
are relatively easy to perform, touches to the ring and little 
fingers are more taxing. They also report selection accuracy 
for different numbers of targets distributed along the length of 
the fingers. These data are valuable baselines for our work. 

Input on Finger Nails 
The nail is a convenient site for finger augmentation: it is rigid 
and has a cosmetic tradition of worn accessories that minimally 

interfere with use of the hands. However, in comparison to the 
wealth of literature on the fingers, it has attracted relatively 
little research attention. It has been previously proposed as a 
convenient site to mount tracking hardware for objects [37] or 
finger gestures that are independent [35] or that occur with re-
spect to a sensor mounted on another finger [6] or an external 
device [7]. Typically such systems track in air movements of 
the thumb, the most articulate digit. Most relevant to the cur-
rent paper is work that has placed touch sensors on nails – both 
Kao et al. [20] and Lee et al. [23] describe thumbnails covered 
with grids of capacitive electrodes capable of supporting input 
such as simple taps and swipes and controlling a cursor via a 
touch of another finger or by touching the thumbnail against 
the body. This paper extends this prior work by considering 
a full set of five nails, rather than a single thumbnail, by ex-
ploring inputs relating to full articulation of the hand (rather 
than cursor control) and by providing a thorough description 
of performance covering comfort, time and accuracy. 

IDEATION WORKSHOP 
To better understand the input and interaction space enabled 
by a set of touch sensitive nails we ran a design and ideation 
workshop with a group of five graduate students (three female, 
two male, mean age 27) engaged in either Industrial Design 
(four) or Human-Computer Interaction (one) programs. The 
goal was to generate diverse interaction ideas we could use to 
develop a set of concrete input actions. The workshop spanned 
three hours as follows: 

Ice-breaking/Priming (30 mins): Introductions and scene 
setting to establish the topic and input/use context – the work-
shop focused on using the nails as input for smart glasses. 
Accordingly, participants watched promotional videos from 
a set of existing smart glass products (Epson BT300, Google 
Glass, Microsoft Hololens, Vuzix Blade). 

Brainstorming – Tasks (30 mins): Participants generated a 
set of useful services or tasks that could be performed by 
smart glasses, such as those relating to messaging, navigation 
or media applications. This took the form of a brainstorming 
session in which tasks were noted down on post-its, announced 
to the room and placed on the wall. 

Brainstorming – Input (30 mins): Participants generated 
input actions, widgets and systems that a smart glass user 
could operate in order to access services and perform tasks 
on a device. This session followed the brainstorming format; 
ideas were kept distinct by using differently colored post-its. 

Nail Input – Priming (30 mins): To provide context for the 
final task, we had each participant don a set of fake nails and 
showed them videos from a set of research papers [5, 11, 20, 
35] and products (Nod [28] and Talon, www.talonring.com) 
dealing with finger augmentation and thumb-to-finger input. 
In addition to sensing touches, participants were informed the 
nail system could sense overall hand orientation and rotation. 

Brainstorming – Interaction Designs (30 mins): In the final 
brainstorming session, participants devised interaction con-
cepts based on touching the nails they were wearing and using 
the input actions, widgets or techniques they had proposed to 
achieve the original set of tasks or services. 
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Symbolic/Pose: Hand poses proposed for like (nail tips touching hand), 
confirm (thumb touching index nail plate), play music and take photo. 

Movement metaphor: Touching a nail and twisting to control a setting, 
flicking the index to delete content and tapping a nail tip to select. 

Spatial: Assigning apps or commands to specific nails. 

Directional: Directional flicks or swipes for scrolling or navigation. 

Primed/Abstract: Swipe nails to delete content, double tap tips to select. 

Figure 2. Example designs proposed in the ideation workshop. 

The session closed with debriefing. It generated 80 design 
concepts. These were diverse, but also subject to clear trends. 
Key variations occurred in the nails used, the touch actions 
employed and, to a lesser extent, the nail regions touched. 
In terms of the nails used, half the inputs relied on a single 
nail (mainly thumb and index) while another quarter used 
multiple nails either simultaneously (e.g. a two-finger tap), 
continuously (e.g. a swipe over two fingers), or as a discrete set 
(e.g., each nail as a short-cut button, but proposed as a group). 
In the discrete case, nail usage was evenly spread across all 
nails. In terms of actions, more than half the proposals used 
taps, while flicks and swipes were also common. Just three 
proposals featured other actions (circular swipes or rubbing). 
Finally, nail region was often not specified. When it cropped 
up, the tip was most frequently mentioned, and the edge or 
side were also used. The lack of specificity here may be due to 
the perception of a fingernail as a single location or “button”. 

Beyond this functional classification, we summarized the ideas 
through an affinity process: a single researcher clustered the 
full set of ideas based on the final descriptions, notes from the 
workshop and the summary statistics, ultimately deriving the 
following five themes (also illustrated in Figure 2). 

Symbolic/Pose (21.25%): This collected ideas in which hand 
poses triggered applications or actions: a thumb-up (sustained 
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contact by all four fingernails with the palm) for a social media 
like or favorite; an OK gesture of thumb covering index nail to 
signify approval; a “rock-on” hand gesture (middle and ring 
nails constrained by thumb) to open a music app; a “V” sign 
(ring and little covered by thumb) to take a photo. 

Movement Metaphor (18.75%): Finger and hand motions 
were applied metaphorically. For example, flicking the index 
finger out from the thumb was proposed for sending a message, 
much as the same action might push a physical object away. 
Similarly tapping the finger was associated with real world 
button presses for activities such as taking a photo. Associating 
the same pose with a rotational hand movement was proposed 
for changing a setting – like gripping and turning a dial. 

Spatial (17.5%): The fingers were also divided up spatially, 
so that different nails were associated with different functions 
such as launching a specific app, a concept that has appeared 
in prior work [18]. Additionally, these were qualified by the 
nail area or nail action being performed. For example, while 
tapping on the tip of a nail could open an app, holding the 
whole nail could copy content from it and flicking the finger 
away could paste into it. 

Directional (20%): Proposals were also based on directional 
mappings. For example, flicking either the index (from the 
thumb) or the thumb (from the index) with the hand facing 
the user, actions which respectively involve predominantly 
leftward and rightward motion, were proposed to signify previ-
ous/next on an e-book app or media player. Similarly, moving 
the thumb over all fingernails when they were aligned verti-
cally was proposed for scrolling. 

Primed/Abstract (22.5%): Suggestions were also derived 
from current input technologies. Double tapping nail tips 
was proposed to select content while swiping across nail tips 
deleted it, in much the same way that secondary selection 
mechanisms and swipes are currently used on mobile devices. 
The use of nails for these basic interactions suggests that users 
may be able to generalize their existing knowledge about how 
to operate smart devices to a nail-based input system. 

These design themes were frequently combined. For example, 
the movement of rotating a dial was merged with spatial map-
pings such that touching different fingers and rotating could 
control the volume, brightness, or play back position of media 
content with different nails. Similarly, the click movement 
metaphor for taking a photo was combined with spatial use of 
the different nails: the index for photo and middle for video. 

INITIAL NAIL INPUT SET 
We designed an initial set of nail inputs based on both prior 
work and key variations observed in the workshop: the differ-
ent nail(s) used, regions touched and touch actions. To create 
a coherent and complete range of possibilities, we defined 
each dimension as follows: 

Nail(s): Due to the diverse uses of both single and multiple 
fingers in the workshop, we included all five individual nails 
(Single) plus six nail combinations (Mult): all three adjacent 
finger pairs (e.g. index plus middle but not index plus ring), 
both contiguous finger triples and the quad of all four fingers 
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Figure 3. Nail Regions used in Single Tap (a), Flick (b) and bi-directional 
HSwipe (c) and VSwipe (d) input actions. (e) shows the six contiguous 
multiple (Mult) nail combinations highlighted in blue. 

(see Figure 3 (e)). The thumbnail was not used in multiple nail 
inputs – it was inevitably the touching digit. 

Nail Region: Although regions varied relatively infrequently 
in the workshop, touching different nail regions is the domi-
nant way of interacting in prior work [20, 23]. As such, we 
opted to include five nail touch regions: Tip, the distal edge 
of the nail; Center, the plate of the nail; Root, the proximal 
edge of the nail over the lunula; Inner side, the lateral edge 
of the nail facing the first interdigital space (between thumb 
and index); and the Outer side, the opposite lateral edge of the 
nail that faces away from this space – see Figure 3 (a). 

Action: Based on the actions proposed in the workshop, we 
included Taps of the nail, Flicks of the finger and swipes over 
the nail(s) either horizontally (HSwipe) or vertically (VSwipe) 
in both directions. 

To instantiate these dimensions in a set of concrete input ac-
tions, we first differentiated between touches to single and 
multiple nails. For each action, we then defined the nails and 
regions on which it could be used. We excluded combinations 
if they were impossible (e.g., HSwipe on the Inner side of 
the nail), judged to be extremely challenging (e.g. VSwipe 
over multiple nails) or hard for a user to meaningfully distin-
guish (e.g., Flick from different nail regions). For single nail 
touches, we ultimately included all five nails for all actions. 
Taps could take place on all five nail regions (25 different 
inputs in total), Flicks on only the Center region (5 inputs), 
HSwipes on Tip, Center and Root regions in both left/right 
directions (30 inputs) and VSwipes on Inner, Center and Outer 
regions in both up/down directions (30 inputs). Single inputs 
are illustrated in Figure 3 (a) through (d). For multiple nail 
inputs, we include all six nail combinations (Figure 3 (e)) for 
Tap, Flick and HSwipe. Mult-Taps could take place on Tip 
and Center regions (12 inputs); Mult-Flicks on center regions 
(6 inputs) and Mult-HSwipes on Tip, Center and Root regions 
in left/right directions (36 actions). This process led to a com-
prehensive and intentionally inclusive set of 144 input actions 
that included the vast majority of single-handed input actions 
proposed in the workshop. Only seven input actions, involving 
either other body parts (e.g., the other hand or the face) or 
infrequently proposed motions (e.g., rubbing the nail), were 
excluded. The rest of the work in this paper sought to refine 
this set to a more practical and functional subset. 

COMFORT STUDY 
We first assessed the 144 input actions by capturing their per-
ceived comfort, a metric previously used to make recommen-
dations about viable finger input actions for use in interactive 
systems [25, 13]. In line with closely related prior work [18], 
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Figure 4. Example study instructions showing different actions and re-
gions for single (top) and multiple (bottom) nails. 

the study was conducted with participants’ unencumbered 
hands in order to capture comfort ratings in a natural situation, 
unbiased by the specifics of any prototype sensing system. 

Participants and Method 
Sixteen participants were recruited from the local student body 
via social media. All were right-handed, nine were female and 
seven male, and they had a mean age of 22.9 (SD 3.32). Using 
a one to five scale, they indicated they were fluent users of com-
puters (4.6) and smartphones (4.8) but had little experience 
with wearables such as smartglasses (2.1). The experiment 
lasted approximately 30 minutes and the participants were 
compensated the local equivalent of five USD. 

The study had participants try out and then rate the comfort 
of hand actions shown to them on a laptop screen. They were 
asked to use their right hands and find the most comfortable 
way to make each touch before assigning a rating – there was 
no prescribed method for making each touch. Each hand action 
was presented using both an image and textual description – 
see Figure 4 for examples. Ratings were captured using a five-
point Likert-scale (1: very uncomfortable, 5: very comfortable, 
as in [18]). Each item in the set of hand actions appeared twice, 
once in each of two randomly ordered blocks composed of 
all actions. This arrangement led to logging 288 ratings per 
participant or 4608 ratings in total. 

Results 
We first performed a reliability check by calculating the mean 
per-user Pearson correlation between the two sets of ratings 
each generated [13]. This was 0.62 (SD: 0.12), indicating a 
moderate to strong relationship between the ratings assigned 
to repeated actions. This suggests participants were able to 
assess and report their comfort reliably and consistently and in-
creases confidence that the data captured is valid. The overall 
mean rating reported in the study was 3.41/5.0, a figure prior 
work has suggested indicates high comfort [18]. Figures 5 
and 6 present a summary of the comfort ratings for each nail, 
action and region and highlight that ratings varied consider-
ably. Following prior work [25], we explored differences in 
these data statistically. We used the processes outlined by 
Wobbrock et al. [41] and applied the Aligned Rank Transform 
(ART) followed by factorial repeated measures ANOVA and 
pairwise post-hoc contrasts incorporating Bonferroni correc-
tions. We calculated effect size using η2 [8]. As our analysisp 
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Figure 6. Comfort ratings for each action and region shown as boxplots. 

involved eight separate ANOVAs, we applied a conservative 
alpha threshold of p < 0.00625 (0.05/8). 

Seven ANOVAs examined all data from a particular input 
action involving either single or multiple fingers using both 
nail and nail region (except for flick actions, which did dis-
tinguish between regions) as independent variables. Table 1 
summarizes the outcomes, omitting non-significant results and 
those with lower effect sizes (η2 <= 0.1) for brevity. We note p
there were no significant interactions with effect sizes over 0.1, 
which suggests the post-hoc contrasts, which can be invali-
dated by interactions after ART procedures, remain valid. This 
analysis indicates that, in terms of the nail variable, single nail 
touches to the thumb were significantly more comfortable than 
to other fingers and touches to the little finger significantly 
less comfortable; comfort ratings for the other single fingers 
were similar and between these extremes. Multi-finger inputs 
involving the little finger were also rated as significantly less 
comfortable than those involving two or three of the other 
fingers. In line with prior work [18], these results indicate 
users feel reduced comfort when touching the little finger. In 
terms of the region variable, touches to the outer and root were 
significantly less comfortable than touches to the inner and tip, 
with touches to the center falling between these extremes for 
simple actions such as tap. 

The final ANOVA compared data from each of the seven 
actions involving the Center region. We focused on this subset 
of data as Center is the only region present in all seven actions 
– we can therefore compare actions without confounds due to 
variations in region. Unsurprisingly, as the input actions were 
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Figure 7. Nail touch sensors, showing electrode size and arrangement: 
thumb (left); index, middle and ring (center-left) and; little (center-
right). The top corners of each board are rounded to mimic the shape of 
a human nail. The black sections sit behind the nail on the distal finger 
phalanx. Right image shows underside of thumb sensor mounted on a 
cosmetic artificial nail with thermoplastically insulated circuitry. 

quite varied, it showed significant differences and the largest 
effect size in the study (F (6, 90) = 26.5, p<0.001, η2 = 0.64).p
Post-hoc contrasts indicated single finger and simpler inputs 
were more comfortable. Specifically, Flicks were rated more 
comfortable than VSwipes (p = 0.04), HSwipes (p < 0.001) 
and all multi-finger actions (all p < 0.001). Similarly, Taps and 
VSwipes were more comfortable than HSwipe, Mult-Tap and 
Mult-HSwipe trials (all p < 0.001 bar VSwipe-HSwipe at p = 
0.03). Additionally, Taps were more comfortable than Mult-
Flick (p = 0.011) and Mult-HSwipe trials less comfortable 
than HSwipes (p = 0.003) and Mult-Flicks (p < 0.001). 

Its worth informally contrasting the comfort data in this study 
with that reported by Huang [18] for the inner surfaces of the 
fingers. The most directly analogous data is for single taps 
on the dominant hand. Huang reports three ratings per finger 
ranging from 4.8/5 (left index distal phalanx) to 2.1/5 (right 
little proximal phalanx) and ultimately select seven finger 
regions due to their high comfort, defined as mean results over 
3/5. In the current study, the mean ratings for the optimal three 
regions (tip, inner, center) on all nails all equal or exceed a 
mean rating of 4.07/5 – 15 tap locations in total. While this 
comparison is speculative, we suggest it indicates that simple 
nail touches may be both more comfortable and expressive 
than touches to the finger phalanxes. A candidate explanation 
for this is the relatively small scale of the movements involved 
in nail touches, compared to the stretching required to touch to 
areas such as the proximal phalanxes of the fingers. We note 
that while this comparison does not constitute formal proof, 
it does serve as supporting evidence that nail touches are a 
comfortable way to make input with the fingers. 

NAIL SENSOR SYSTEM 
Encouraged by these results, we developed a prototype that 
senses touches to all five fingernails. There are two approaches 
to this task in the literature. NailO [20], implements an impres-
sively miniaturized 4mm thick standalone device featuring 
sensing, power, and communications all on the thumbnail. 
However, arguing that a device as thick as 4mm would inter-
fere with use (and their empirical objectives), Lee et al. [23] 
designed a touch sensing nail system composed of a 0.3mm 
thick flexible PCB on the nail wired to a wrist mounted device 
with all other functionality. Our objectives align more closely 
with Lee et al., so we opted for a similar implementation. 

Paper 649 Page 5



 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Action Variable(s) F-Value DOF p η2 
p Post-hoc contrasts 

Tap Nail 
Region 

29.18 
111.38 

4, 360 
4, 360 

0.001 
0.001 

0.24 
0.55 

All significant at p<=0.003 except I-M, I-R and M-R (non-significant) 
All significant at p<=0.01 except Tip-Inner (non-significant) 

Flick Nail 5.76 4, 60 0.001 0.28 I-L (p=0.03), M-R (p=0.01), M-L (p=0.003) 

HSwipe Nail 
Region 

47.22 
62.09 

4, 435 
2, 435 

0.001 
0.001 

0.3 
0.22 

All significant at p<0.001 except I-M, I-R and M-R (non-significant) 
All significant at p<0.001 

VSwipe Nail 
Region 

30.99 
191.22 

4, 435 
2, 435 

0.001 
0.001 

0.22 
0.47 

All significant at p<=0.005 except T-I (p=0.042) and I-M, I-R and M-R (non-significant) 
Both Outer-Inner and Outer-Center significant at p<0.001 

Mult-Tap Nail 
Region 

16.64 
24.8 

5, 165 
1, 165 

0.001 
0.001 

0.36 
0.13 

IM-MR not significantly different. IM and MR significantly different to all other combinations (p<=0.002) 
N/A 

Mult-Flick Nail 9.33 5, 75 0.001 0.38 IM different (p<=0.01) to all bar MR and IMR (non-sig.); MR sig. different to MRL and RL (p<=0.01) 

Mult-HSwipe Nail 
Region 

76.46 
96.06 

5, 525 
2, 525 

0.001 
0.001 

0.42 
0.27 

All significantly different (at p<=0.005) except IM-MR, IMR-MR, IMRL-MRL and MRL-RL 
All significantly different at p<0.001 

Table 1. Aligned Rank Transformed ANOVA and post-hoc test results from the comfort study. Data from non-significant tests and tests with low effect 
sizes (η2 <= 0.1) are not presented. Nails denoted by initials: T(humb), I(ndex), M(iddle), R(ing) and L(ittle) p 

We created three different flexible PCBs based on mean nail 
sizes [19] for the thumb, index/middle/ring and little fingers. 
Figure 7 shows the sizing, spacing, electrode count and ar-
rangement for each PCB. In each board, capacitive sensing 
was handled by an MPR121 micro-controller mounted on the 
bottom of the PCB and designed to be positioned behind the 
nail on the distal phalanx of the finger. The nail portion of each 
PCB was glued to a standard cosmetic artificial nail. To im-
prove robustness, the front tips of the PCB were curled around 
the nail pad, preventing the PCB from detaching during use 
and ensuring the tip of the nail was touch sensitive. A layer of 
thermoplastic adhesive was applied to the area containing the 
micro-controller to create a smooth, comfortable and insulated 
bottom surface to the whole PCB. Each nail prototype was ap-
proximately 1mm thick and flexible enough to fit snugly on a 
wide range of nail shapes. We firmly adhered it to participants’ 
nails using commercial adhesive gel pads. 

All five nails in a set were wired to a single Arduino MKR1010 
mounted on the wrist with lightweight AWG32 wires that did 
not restrict finger motions. The wrist unit also featured an 
IMU (BNO080) configured to measure raw accelerometer 
data from wrist/hand motions. All data was captured and 
transmitted over USB to a host PC at a rate of 100Hz. In 
terms of the specific data captured, we followed numerous 
prior implementations [30] and sampled raw and baseline 
capacitive sensor readings from each electrode to derive a 
grayscale touch image representing the location and intensity 
of contact with each nail. On the host PC we processed each 
image using a typical process: we up-scaled it by a factor of 
three, used flood fill to segment separate contacts, selected 
the largest as the dominant touch area and, finally, calculated 
image moments to summarize this contact as an ellipse with 
the properties of location, size (major/minor axis length), angle 
and eccentricity [43]. We also retained all raw touch images 
to support subsequent analysis. 

PERFORMANCE STUDY 
This study used the full set of 144 inputs actions and the nail 
prototype system. All visuals were presented on a PC screen. 
It sought to complement the comfort study by collecting objec-
tive performance data: the time it took to perform each input 
action; the raw touch sensor data, and; accuracy based on a 
threshold based input classifier we developed (see below). The 
goal was to use this data to help select a final set of viable 
input actions that can be performed rapidly and that are readily 
distinguishable from each other. 

Participants, Procedure and Design 
Sixteen undergraduate students participated in the study (mean 
age of 22.9 (SD 1.65), 9 males, all right-handed). They were 
fluent computer (4.6/5) and smart-phone (4.8/5 users) and 
screened for average or larger nail size [19]. The experiment 
took 40 minutes with each participant compensated with 10 
USD. To encourage good performance, an additional 20 USD 
was awarded to the two top performing participants (deter-
mined using a normalized weighting of time and accuracy). 

Throughout the study, participants were seated at a desk in 
front of a laptop computer. The study began with partici-
pants donning the nail sensor and wrist processor unit on their 
dominant hand. The study task and input actions were then 
explained and participants completed a familiarization session 
(max two minutes) where they could freely ask questions, try 
input actions and see a visualization of their inputs on the 
laptop. After ensuring all actions and study instructions were 
understood, the main trials began. To start each trial, partic-
ipants needed to press the space bar on the laptop with their 
dominant hand – the one wearing the prototype. This ensured 
all input actions started from a similar “hands-occupied” pose. 
A depiction of one of the input actions was then shown (see 
Figure 4) on the laptop and participants were asked to perform 
this action rapidly and accurately. After an initial nail touch, 
the instructions changed to show a circular cursor and a grey 
highlight illustrating the nail regions that they needed to touch 
to successfully complete the trial. Trials terminated on release 
of all nails, or timed out after ten seconds. Trial duration was 
defined as the period between the initial key press and final 
release of the nails. Breaks between successive nail touches 
of 200ms were allowed, as pilot testing indicated small gaps 
in multiple nail touches occurred frequently. After each trial, 
participants received feedback as to its correctness. 

Trials were presented in 144 randomly ordered blocks, each 
containing four repetitions of the same input action. Trials 
resulting in touches to incorrect nails (e.g., index when middle 
was requested) were considered invalid and repeated. Further-
more, the first trial in each block was discarded as practice. 
We therefore retained a total of 432 trials involving touches 
to correct fingers per user (6912 in total). The goal of this 
structure was to screen out clear errors (wrong fingers) and to 
reduce the impact of examining and interpreting the study in-
structions on the measured performance: for each input action, 
we captured data from a standard hand pose (pressing a key) 
but only immediately after participants had practiced it. 
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Figure 8. Confusion matrices for classifying input action (left) and nail 
region (right). Data shown in percentages so rows sum to 100. 

Nail Input Recognizer 
We created a simple decision tree to classify nail touches from 
the five sensors to one of the 144 nail inputs. We first omitted 
data from the first and last 50ms of each touch, effectively 
ignoring touches less than 100ms in duration. This was be-
cause the initial and final stages of a touch could vary strongly 
in position and velocity as different finger regions came into 
contact with the sensors [38]. Furthermore, we observed very 
short touches may represent inadvertent contact with the nails. 
In cases where the resultant set of touches spanned multiple 
nails, we tested for invalid sets (e.g., use of the thumb or non-
contiguous fingernails such as index and little) and screened 
the results to create valid combinations by removing the thumb 
or the temporally shortest touch. 

Based on the touched nails, we then determined the touch ac-
tion. We differentiated flicks from other events by examining 
IMU data in the 100ms immediately after release of the nails – 
we used a threshold on the peak summed magnitude of accel-
erations along x and y axes (i.e., those capturing information 
from finger/wrist flexion movements and omitting deviation). 
Touches not classified as flicks were checked for movement 
on the nail. Specifically we examined the SD of both x and 
y motion and, in the case of multi-finger taps, the temporal 
order of touches to different nails (sequential/simultaneous). 
Sequential touches, or those exceeding a specific movement 
SD threshold were used as criteria to classify touches as either 
horizontal or vertical swipes in both directions. Any remain-
ing unclassified touches were considered taps. Finally, we 
classified nail regions by calculating mean touch position and 
dividing each nail into five equally sized areas, as illustrated 
in Figure 3 (a). The two thresholds used in this initial rec-
ognizer were established via iterative testing during system 
development. They were intended to support empirical study, 
and we do not expect them to be optimal. We considered peak 
acceleration over 0.41g to signify a Flick and SD of x or y 
motion during a touch over 0.26 sensor units (1.25mm on the 
thumb and 0.99mm on the fingers) to signify a swipe. 

Results: Distinguishing Nail Inputs 
We analyzed classification errors in order to better understand 
how people make input, and errors, on touch sensing nails. 

Nail(s). We recorded 574 inputs (7.67%) to wrong nails, with 
most (5.93%) occurring in multiple nail touches. These prob-
lems fell into three categories: missing (omitted nail(s) 4.37%); 
excess (extra nail(s), 1.95%) and; mistakes (wrong nail(s), 
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1.34%). Missing errors predominantly occurred with Mult-
HSwipe (84.0%) and/or on touches to three or four fingers 
(74.5%). Excess touches also occurred, for the most part, in 
multiple nail touches, particularly those involving ring and 
little fingers (84.7%). 

Actions. The mean classification rate for actions was 90.5%. 
Flicks were frequently misclassified as Taps and there was also 
confusion between Tap, HSwipe and VSwipe – see Figure 8 
(left) for full details. 

Regions. The mean classification rate for regions was 80.8%. 
Tip and Inner showed good performance, with Center, Root 
and Outer more substantially overlapped – see Figure 8 (right). 

We note numerous factors contributed to these misclassifica-
tions including: cognitive errors such as misinterpretation of 
the study instructions; performative errors such as slipping 
onto an adjacent nail during input, or using the nail, rather than 
the pad, of the touching digit to make contact; system errors 
resulting from non-optimal acceleration/movement thresholds 
for Flick and Swipe detection and; fundamental limitations re-
lating to the small size of the nails – there is simply little space 
to distinguish between regions or to make swiping motions. In 
the trials we retained for analysis, the mean accuracy among 
all 144 input actions was 74.2% (or 68.5% if nail touches to 
wrong fingers are included). The uneven distribution of these 
errors provides clear directions for simplification of the gesture 
set and improvement of the system. These include: minimiz-
ing touches to multiple nails; designing swipes to be more 
readily distinguishable from taps; avoiding challenging nail 
regions (Root, Outer) and; refining system input thresholds. 
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Figure 9. Task completion time for each single and multiple nail input 
shown as boxplots. Outliers greater than 5 seconds not shown. 
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Results: Time Performance 
Figures 9 and 10 show task completion time for each nail, 
region and action. We analyzed this data following procedures 
from the comfort study: eight repeated measures ANOVAs; 
Greenhouse-Geisser sphericity corrections applied when in-
dicated; a conservative alpha threshold of p < 0.00625; and 
followed up with Bonferroni corrected post-hoc t-tests. Table 2 
summarizes the significant results, omitting non-significant re-
sults for brevity. Due to the comparatively low effect sizes, we 
did not conduct follow up testing on the HSwipe interactions. 

In general the results in Table 2 show fewer differences than 
the comfort data. This is in line with prior suggestions that 
users can tolerate a range of comfort levels before their ob-
jective performance will be impacted [13] and highlights the 
importance of rigorously gathering this type of qualitative data. 
The Tip nail region offers significantly faster performance than 
other regions in three of the four of the input actions it features 
in (Tap, HSwipe and Mult-HSwipe). Similarly, the Inner and 
Center regions also enable faster performance in a more lim-
ited set of circumstances. These results suggest these regions 
should be prioritized. We also note the effect of the nail vari-
able in Mult-HSwipe reflects the increased distance traveled 
when more nails are involved in a touch; it is inevitable. 

We conducted a final RM-ANOVA on time data from each of 
the seven actions involving the shared Center region. As with 
the comfort study, we opted to focus on this region as it is the 
only one that is used in all seven actions, therefore avoiding 
potential confounds in the analysis due to the different regions 
used with each action. This test revealed significant differ-
ences (F(2.78, 41.76) = 47.34, p < .001, η2 = 0.759). Flicks p 
were performed rapidly, with single Flicks significantly faster 
than all other actions bar Mult-Flicks (p < 0.037), which were 
in turn faster than all other actions bar single Taps (p < 0.008). 
In contrast, HSwipes were performed slowly, with single 
HSwipes significantly slower than single VSwipes (p = 0.04) 
and Taps (p = 0.009) and Mult-HSwipes inevitably slower 
than all other actions (all p < 0.001) – in contrast to other 
inputs this action involved a sustained and time consuming 
movement across two to four fingers. Based on this limited set 
of differences, we conclude that objective performance with 
a wide range of different input actions on the nails is viable: 
while some actions may be particularly readily executed (e.g., 
Flicks), most basic actions such as Taps and VSwipes can be 
performed with quite consistent speed. 

It is also worth contextualizing the numerical results. Task 
times in the study capture performance of an input action from 
a “hands-busy” pose of pressing a key to start the trial: given 
this constraint, we believe the mean per trial task time for 
the whole study of 1.64s (including 0.93s of reaction time) 
represents strong performance and reflects the ready physical 
availability of the nails as a site for thumb-to-finger [31] and 
finger-to-thumb touch input. We note there is no directly com-
parable task performance time data from prior nail based input 
systems: Kao et al. [20] report only classification accuracy 
while Lee et al. [23] report data for touches of the thumbnail 
to the face, a quite different scenario. Regardless, we note 
their data for tap inputs ranges from 1.48 seconds for an error-

prone “land-on” selection method to 2.52s for a more reliable 
“lift-off” technique. Our mean data, drawn from a wide range 
of different input actions, lies towards at the bottom end of 
this range – touches between the fingers can in general, be per-
formed more rapidly than touches to the face, most likely due 
to their familiarity. While further data and comparative studies 
are required, we believe our results are sufficient to support the 
idea that a wide range of thumb-to-finger and finger-to-thumb 
nail touches can be performed rapidly by users. 

Finally, we also highlight how individual differences, such as 
in hand/finger size or flexibility, varied the performance of 
the input actions. For example, although the thumb-to-finger 
pattern was constant, some participants readily touched their 
thumb tips to distant targets (e.g., the little fingernail) while 
others appeared to stretch more, which tended to result in 
larger touches with the whole thumb pad. Similarly, 19% of 
participants touched their nails against their palms to achieve 
multiple nail inputs. These variations suggest that creating a 
universal nail touch input system that can be reliably used by 
all people will be challenging; personalization may be needed. 

REVISED SYSTEM DESIGN 
Based on both study results, we revised the system design in 
terms of the input actions it supports and the recognizer it uses 
to classify them. To demonstrate the revised system is both 
expressive and useful, we created several example applications 
to showcase its functionality. We describe this work below. 

Final Input Set 
We refined the input set to 29 actions, 20.1% of the original 
size. We included actions based on the following criteria and 
goals. Actions in the set should be: 

Comfortable, defined as actions that score over the mean 
(3.41) comfort score. We discarded most multiple nail inputs 
and the less comfortable finger regions of Root and Outer. 

Distinguishable, via selecting actions that were more reliably 
recognized and by providing redundancy. This was achieved 
by assigning different actions to different regions (e.g., Center 
for Mult-Tap and Tip for Mult-HSwipe) 

Diverse, achieved by retaining examples from the majority 
of input actions and all five of the themes identified in the 
ideation workshop (see Figure 3). 

Consistent, achieved by making exceptions to prior heuristics 
to create a coherent set. For example, including a set of input 
actions on the little nail that match those on the other nails, 
even though its comfort and performance results were reduced. 

The final input actions included 25 Single nail inputs: ten Taps 
(on each nail Tip and Center); ten VSwipes (on each nail Inner 
region in both up and down directions); five Flicks (on each 
finger). Multiple inputs were restricted to the pair of index 
and middle fingers. There were four in total: Mult-Tap on 
the Center region; Mult-HSwipe on the Tip in left and right 
directions) and Mult-Flick on the Center Region. This set of 
actions is rich enough to enable designs derived from all five 
of the themes identified in the ideation workshop. 
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Action Variable(s) F-Value DOF p η2 Post-hoc test results p 
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Tap Region 10.57 4, 60 0.001 0.413 Tip significantly faster than Inner, Outer, Root (all p<=0.002); Inner significant faster than Outer (p = 0.033) 
Region 15.03 1.36, 20.44 0.001 0.501 Tip significantly faster than Center (p = 0.0076) and Root (p = 0.0001) 

HSwipe Nail:Direction 4.46 4, 60 0.003 0.229 N/A 
Nail:Region 2.89 8, 120 0.006 0.162 N/A 

VSwipe Region 7.57 2, 30 0.002 0.335 Inner significantly faster than Outer (p <= 0.0085) 
Nail 29.94 3.07, 45.98 0.001 0.666 Touches to fewer fingers significantly faster (all p < 0.0017) except IM-IMR and IM-MRL (both non-significant) Mult-HSwipe Region 28.99 1.41, 21.15 0.001 0.659 Tip significantly faster than Center (p < 0.001) and Root (p < 0.001). Center faster than Root (p = 0.002) 

Table 2. ANOVA and post-hoc test results on time data from performance study. Data from non-significant tests are not presented. Fingers denoted by 
initials: T(humb), I(ndex), M(iddle), R(ing) and L(ittle). 

Figure 11. Notification sample application showing how nail touches can 
access multiple functions (e.g. open, delete) seamlessly. 

Revised recognizer 
We revised the recognizer based on study data and the reduced 
input set. Firstly, we merged Center region with Root and 
Outer for Tap and ignored touches to ring and little fingers 
during multiple nail input. Secondly, we optimized thresholds 
using a brute force search to minimize misclassifications in 
the initial study. We set new thresholds as 0.38g for peak 
acceleration and 0.13 sensor units (0.625mm for thumb and 
0.5mm for fingers) for movement SD. Finally, we leveraged 
the redundancy of regions to actions by modifying thresholds 
according to the region touched. Specifically, for touches on 
the Inner region we halved the threshold for VSwipe detection 
while for touches to the Tip or Center, we doubled it. This 
made the system more sensitive to and resilient against small 
movements, depending on whether or not they were expected 
for a given region. Together, this boosted accuracy to 88.7%. 

Sample applications 
To showcase how the final set of input actions could be used to 
control a wearable device, we developed sample information 
management applications for a typical wearable: smart glasses. 
These embody and express key qualities of input via finger 
augmentation – movements are small in scale (i.e., composed 
of mirco-gestures [4]) and performable eyes-free [2]. We 
describe two examples in detail below, and developed other 
applications (e.g., calendar, weather) using similar designs. 

Notifications. We developed a system to manage notifications 
through nail touches. When a notification arrives, it can be 
peaked at by tapping the nail tip; transitioning to holding 
the center provides an expanded view. When finished, the 
notification can be left on the stack by simply removing the 
touching finger, or deleted by flicking the nail - see Figure 11 
If there are multiple notifications, the top four can be assigned 
to each of the fingers in vertical order, providing immediate 
access to each without scrolling. 

Media. We explored metaphors in the context of a media 
playback application. Users can play/pause content through 
tapping on the index and middle nails, a configuration in which 
the pair of fingers resembles a pause icon (||). Similarly, a 
thumbs-up hand pose (all fingertips in contact with palm) 
marks favorite items while horizontal swipes left/right signify 
previous/next song operations. For continuous input, nail 

touches can be combined with motion data: tap and hold 
the index tip while rotating the hand to control the playback 
position. Finally, vertical swipes up/down on the thumbnail 
adjust the volume higher or lower. 

VERIFICATION STUDY 
A final study evaluated the use of the revised 29 item input 
action set, recognizer and example applications. We sought to: 
assess classification accuracy; explore the impact of threshold 
personalization; capture performance in a more realistic task 
and; solicit qualitative comments, reactions and feedback. 

Participants and Method 
We recruited ten participants from the local student body via 
social media channels. All were right-handed, five were fe-
male and they had a mean age of 24.1 (SD 3.14). They indi-
cated they were fluent users of computers (4.2/5) and smart-
phones (4.5/5) but had little experience with wearables such 
as smartglasses (1.8). The experiment lasted approximately 
45 minutes and the participants were compensated 10 USD. 
The experiment contained three stages, each separated by a 
short break. The goal of the first stage was to compare per-
formance results with the previous study and provide data 
to optimize personalized per-user thresholds. The procedure 
followed the performance study but used the reduced set of 29 
input actions. In the second stage there were four trial blocks 
(the first treated as practice), each containing all 29 actions 
presented in a random order. The goal of this stage was to 
explore performance when users were not aware of the input 
action they would need to make. Furthermore, it enabled us 
to validate the personalized thresholds from the first stage on 
a fully independent test set. In the final stage, we showed the 
two applications described in the prior section to participants, 
had them try out and experience these for 10 minutes and 
then conducted a semi-structured interview to capture their 
reactions and opinions. The interviews were audio-recorded 
and transcribed. For this stage of the study, participants wore 
the Microsoft HoloLens and all UI content was shown on this 
device. In total, this study retained 870 trials in the first stage, 
870 trials in the second stage and approximately 60 minutes 
of transcribed interview contents. 

Results 
The mean per trial duration and accuracy of the first and sec-
ond stages was (1.43s / 1.61s) and (89.7% / 88%), modest 
improvements over the prior study. Reaction times showed 
similar trends (0.83s / 0.95s). This suggests users benefited 
from the smaller number of actions and had little difficulty 
with the more challenging task in the second stage. Wrong 
finger errors were also low throughout: 1.1% in both stages. 
This indicates reducing multiple finger inputs was an effective 
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Figure 12. Confusion matrices for classifying input action (left) and nail 
region (right) using personalized recognizers on trials from the second 
stage in the verification study. Data shown as percentages, so rows sum 
to 100. 

strategy. Despite the data derived thresholds used in the first 
stage, single finger Flick remained prone to misclassification 
with Tap (11.3%) and VSwipe (2%) and Tap and VSwipe were 
also often confused (5.7% and 14.7%). This suggests user per-
formance of these actions is diverse: fixed thresholds are not 
ideal. Accordingly, we used a brute force search to find per-
user thresholds that minimize classification errors in the first 
stage of the study. We applied these thresholds to the second 
study of the study, leading to an improved mean classification 
accuracy of 94.3%. Figure 12 shows confusion matrices for 
personalized action and region classification thresholds. This 
result indicates that personalization is effective and, likely, 
necessary to produce an effective nail input system. 

Comments from the third stage of the study were transcribed 
and analyzed using affinity diagramming to identify clusters 
and themes. Participants highlighted qualities including: “con-
venient” (P0, P1, P5, P6); expressive, “various operations are 
easily done” (P8, P9) and; ease of access (P2, P6), or as both 
P7 and P8 noted “no other equipment is needed”. Nailz was fa-
vorably compared to mid-air gestures by P3 and P8 noted using 
nail touches was “less tiring, simpler and socially acceptable”. 
Participants also felt many of the input actions were readily 
learnable. P0 remarked: “play/pause and next/prev songs are 
well matched with Nailz action” and changing playback posi-
tion with rotations was just “like rotating a knob”. P3 and P4 
valued familiar actions, referring to uses of flicking to delete 
and long tap to open notifications as “intuitive”. Similarly, 
P1, P2, and P9 appreciated the use of directional mappings 
between finger/hand movements and interface contents – they 
were “well matched each other”. There were worries about 
“unfamiliar mappings” (P2, P4, P5, P6), but also a consensus 
that “it becomes easier after some time” (P4, P5, P6). The 
comfort and utility of some of the input actions were ques-
tioned, particularly by three participants who stressed “input 
on the little nail is frustrating” (P0, P5, P7), possible due to 
Midas touches as the “little finger is curved, so little nail was 
touched unintentionally” (P9). Consequently “real world use 
will involve more wrong touches” (P5). Some of the input 
actions were felt as designed to mitigate this problem: P0 
suggested long tap to open “can prevent mistakes”. Overall, 
we conclude participants were positive on Nailz as a viable, al-
ways available, eye-free and socially acceptable input system 
for wearable computing. 

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

DISCUSSION AND CONCLUSION 
This paper characterizes how a set of touch sensitive nails can 
be used to control other wearables such as smart glasses. The 
data provides a useful complement to prior nail touch [20, 23] 
and finger articulation systems [18, 33] and can also serve as 
a baseline for future work. One key point of comparison is 
recognition accuracy. In a system based on a single thumb-
nail, Kao et al. [20] report accuracy among five input actions – 
cardinal swipes and a long tap – to be 92.3% [20]. The data 
in this paper, covering all nails and a more diverse 29 item 
final input set, achieves an improved accuracy of 94.3% us-
ing personalized recognizers – this is a strategy that should 
be further pursued in the future. This accuracy figure also 
compares well to prior work on camera tracked finger augmen-
tation – Soliman et al. [33] report finger identification rates of 
90.2% (vs the 98.9% reported here) and can recognize one of 
eight action types with an accuracy of 91.06%. We suggest 
the direct sensing paradigm we use may be inherently more 
accurate than camera tracking systems. We also extend prior 
work by reporting additional metrics. Specifically, we add to 
the limited prior reports of task times (of thumbnail touches to 
the face [23]) and comfort (of touches to the inner finger pha-
lanxes [18]) with comprehensive data on thumb-to-finger [39] 
and finger-to-thumb nail touches. These show that nail touches 
can be performed rapidly – in a mean of 1.61s in the second 
stage of the verification study, a figure at the lower end of the 
1.32s to 2.448s range reported for taps triggered by land-on 
and lift-off actions by Lee et al. [23]. In addition, nail touches 
are comfortable – the 144 touches we studied were rated with 
a mean of 3.41/5 which compares well to the mean of 3.34/5 
for 12 touches to the inner fingers in Huang et al. [18]). 

In conclusion, this paper explores finger input for wearable 
computing via the novel form factor of a set of five touch sen-
sitive fingernails. It explores the design space of this system, 
presenting a large set of 144 possible inputs and characterizes 
the comfort, distinguishability and time taken to perform each 
of these actions using a fully functional prototype. We close 
by evaluating a final input set refined by data from the earlier 
studies and capturing qualitative comments about example 
applications. We show that touch inputs on the nails are ex-
pressive, can be comfortable and efficiently performed and are 
readily recognized using simple criteria. We believe that the 
range of small scale inputs supported, the simple classification 
scheme and the speed with which participants performed all 
testify to the viability of this approach. Future work should 
improve sensor hardware (e.g., via on-skin films [29]), inte-
grate the system with signal propagation approaches to finger 
input for improved flick classification [22], consider aesthetics 
(e.g. decorative covers [20, 37]), examine more sophisticated 
recognition schemes, explore solutions to Midas touches (e.g., 
activation gestures such as a multi-nail swipe), investigate per-
sonalization processes (e.g., unsupervised learning) and study 
nail touch input in the field. 
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