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Figure 1: FingerText, a one-handed text entry system for touch sensitive nails. (a) shows two keyboard layouts: a ten key layout
(F10) based on distinguishing between touches to the side and tip of each nail and a five key layout (F5) based on detecting a
single touch event on each nail. (b) shows the sequence of inputs needed to type ’YOU’ on both F10 and F5 layouts. (c) shows
the set of nail touch sensors.

ABSTRACT
Typing on wearables while situationally impaired, such as while
walking, is challenging. However, while HCI research on wearable
typing is diverse, existing work focuses on stationary scenarios and
fine-grained input that will likely perform poorly when users are
on-the-go. To address this issue we explore single-handed wearable
typing using inter-hand touches between the thumb and fingers,
a modality we argue will be robust to the physical disturbances
inherent to input while mobile. We first examine the impact of
walking on performance of these touches, noting no significant
differences in accuracy or speed, then feed our study data into a
multi-objective optimization process in order to design keyboard
layouts (for both five and ten keys) capable of supporting rapid,
accurate, comfortable, and unambiguous typing. A final study tests
these layouts against QWERTY baselines and reports performance
improvements of up to 10.45% WPM and 39.44% WER when users
type while walking.

CCS CONCEPTS
•Human-centered computing→Keyboards; Text input;Mo-
bile computing.
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1 INTRODUCTION
Text entry onwearable devices poses considerable challenges. Touch
input spaces may be small [39], imprecise [55] or out of view [77].
Displays are also often small [67], or offset from input spaces [1].
Solutions to these problems involve techniques such as multi-stage
character selection [34, 51], limited graphical feedback [46], be-
spoke gestural alphabets [77], and optimized keyboard layouts [38].
In addition, wearable devices inevitably target scenarios in which
users are situationally impaired [69]: distracted [24], with one hand
busy [20], or while mobile [57]. These situations demand wearable
text entry systems that can be operated with one hand and while
engaged in common activities such as walking. While researchers
have begun to tackle situational impairments during wearable de-
vice use, such as enabling single-handed input [19], research on
wearable device text entry while actually mobile is in its infancy,
and remains focused on two-handed form factors such as touch
input on smartwatches [1, 62].

However, mobility matters. Interaction on-the-go is a prevalent
use scenario for smartphones [11] and the de facto design of such
systems for stationary settings [30] has contributed not only to
reduced input effectiveness and efficiency but also exacerbated
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social problems such as distracted walking [60] (or twalking), a
potentially dangerous practice that has been banned in several US
cities [10] due to perceptions of the risks it poses at pedestrian inter-
sections. Explicitly designing for mobility aims to cater to, alleviate,
or ameliorate these concerns—if we can better support and facili-
tate effective input, we can reduce the impact of user distraction.
We argue these perspectives should also be applied to wearables.
Indeed, while research on wearable interaction while on-the-go
remains sparse, existing studies highlight unsurprisingly similar
trends—mobility decreases input effectiveness [1, 13] and reduces
performance in reading tasks [54], problems that can be mitigated,
at least in part, through careful interaction design informed by data
describing user performance in input tasks while mobile [57].

One promising design candidate for text entry in this space uses
intra-hand input, defined as the combination of both thumb-to-
finger [68] and finger-to-thumb touches. In such systems, a hand-
worn or remote sensor, for example, a touch surface [31], depth
sensor [59] or RFID tag [33] tracks contact between one or more
fingers of one hand to register input events, most commonly taps
and/or swipes. This type of in-hand input has been previously
suggested as particularly appropriate for on-the-go interaction [80],
an assertion supported by evidence indicating that performance
of in-hand swipes (on a ring sensor) is robust to the disturbances
caused by both walking and running [8]. The simplicity and ready
availability of this modality have also led to diverse text-entry
designs. Whitmire et al. [68], for example, distribute the characters
of a full qwerty keyboard over the finger segments of both hands. A
pair of touch-sensitive gloves tracks thumb touches to these regions
and achieved a Words per Minute (WPM) of 16. Wong et al. [71]
and Lee et al. [38] both propose broadly similar designs for single-
handed use and report substantially lower WPMs: 5.42 and 6.47
WPM respectively. In a variation of this approach, Xu et al. propose
a miniature keyboard spread over the distal phalanxes of either
one [74] or both [73] index fingers; touch typing on these surfaces
reached performance levels of between 13.3 WPM, for one hand,
and an impressive 23.4 WPM for both. Finally, Fashimpaur et al.
[15] use an external camera tracking system in conjunction with
a Head-Mounted Display (HMD) to achieve WPMs of 12.54 for a
two-handed keyboard design based on a probabilistic text entry
system and touches to only the fingertips. While these text-entry
projects have remained focused on stationary input, they effectively
highlight the potential of thumb-to-finger input to support accurate,
rapid, and fully wearable text entry.

We extend this work by considering the impact of, and designing
expressly for, mobility. We first use the previously proposed form
factor of a fingernail sensor system [31, 36] to assess input perfor-
mance between sitting and walking conditions, logging both speed
and accuracy (N=12). We contrast this data and our analysis shows
no significant effects in performance in terms of speed or accuracy.
We then combine these results with previously published data on
the comfort of intra-hand finger touches [36] and simulations of
the word-level accuracy of candidate keyboard layouts [40] in a
quad-objective optimization process intended to generate key ar-
rangements that can support high levels of user performance. Based
on a balanced consideration of the results, we select two candidate
keyboard layouts: F5 and F10. F5 is based on sensing single touches
to each finger while F10 assumes a higher fidelity system capable

of distinguishing two touches per nail. Figure 1 (a) and (b) illustrate
the layouts and how text input was performed in the system. We
close by using our fingernail sensor system to evaluate both F5 and
F10 layouts against QWERTY derived baselines in a word repetition
task [5] while users are walking (N=16).

The contributions of this work are: 1) an evaluation of the impact
of walking on intra-hand input performance; 2) an exploration of
the design of keyboard layouts for intra-hand input that consid-
ers variations in sensing fidelity, in terms of the number of finger
touches that can be detected, and uses computational methods
to balance the competing concerns of speed, accuracy, comfort,
and support for unambiguous word-level text input; 3) the F5 and
F10 keyboard layouts selected to optimize performance and com-
fort for systems capable of detecting either one or two touches
per finger and; 4) an evaluation of text entry performance using
F5 and F10 while mobile, ultimately achieving WPMs, in a task
simulating expert performance, of 31.3 and 25 respectively. This
performance represents improvements of 9.47% and 10.45% over
QWERTY baselines. The data, designs, and results we report, and
methods we present, will help future researchers, designers and
developers create more effective wearable text entry systems for
mobile settings.

2 RELATEDWORK
2.1 Wearable Text Entry
Text entry is a ubiquitous and challenging input task typically
achieved, at high levels of performance, through large dedicated
input devices such as keyboards. As computing devices have di-
versified into smaller mobile and wearable form factors, a consid-
erable body of research has sought to enable rapid text entry on
devices such as tablets [17], smart phones [58] and wearables such
as finger sleeves [73] and rings [23]. The extremely small size and
atypical input and output spaces of many wearables have led to a
particularly wide range of proposals. A common approach involves
adapting smartphone touch screen techniques to watches [51] or
glasses [21]. Envisioning advanced finger trackers, researchers have
also proposed external systems to track in-air finger strokes, thus
supporting input actions that resemble those used in traditional
keyboards and enabling rapid, accurate performance [15, 76]. Other
proposals have sought to leverage the specific touch input capabili-
ties of deployed wearable devices to create entirely novel schemes,
such as a one-dimensional gesture input system [77]. More recently,
text entry research has also begun to design for the situational im-
pairments under which wearable devices are likely to be operated.
WrisText [19], for example, targets one-handed use, recognizing
that wearable device users may be engaged with everyday tasks
such as holding a bag. Similarly, TipTex [74] and BiTipTex [73],
based on miniature touch input surfaces mounted on the index
finger(s), note that they may be accessible even when a user is
holding a bag in the same hand as the device. Inspired by this work,
we argue that successfully designing for mundane situational im-
pairments, such as encumberment or walking, is likely to be a key
factor in the eventual viability of any wearable text entry technique.

Text entry systems based on touches among the fingers of one
hand are particularly relevant to this paper. A common approach
has been to define touch input regions on the inner surfaces of the
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fingers. Whitmire et al. [68] applied this approach to both hands
and a continuous input surface to create an unambiguous QWERTY
keyboard. They demonstrated text entry speeds of 16 WPM after
training, at a cost of encumbering both hands with a full glove input
device. Other projects have explored a similar modality, but focused
on single-handed use, arguing it is more practical in wearable set-
tings. A major challenge in this work has been dealing with the re-
duced number of possible inputs this entails. Solutions include Jiang
et al. [29]’s use of six input regions on the index and middle fingers
with a two-stage input process (as in Zoomboard [51]) to uniquely
specify characters, Lee et al. [38]’s use of nine input regions (i.e.
adding the ring finger) each with three pressure-levels and [71]’s
use of a similar 9 key layout with advanced word prediction tech-
niques. While promising, these approaches have yielded somewhat
limited text entry speeds of 5.42 [71], 6.47 [38] and 9.28 [29] WPM,
after training. This is likely due to factors such as the time cost in-
herent in multi-stage selection processes (e.g., increased KeyStrokes
Per Character (KSPC) [26]), reductions in input accuracy associated
with eyes-free pressure input [61], the use of finger regions, such
as the proximal phalanxes, that prior work has identified as uncom-
fortable [27], or reliance of QWERTY based layouts that may be
poorly suited to the form factor of input on the fingers.

We build on this prior work by exploring typing on the nails.
This finger region has not previously been studied in the context
of text entry and we identify a number of reasons why it may be
particularly suitable for this form of input. Firstly, the nails have
been linked to improved comfort ratings [36], compared to those
reported on the finger phalanxes. The nails may also offer greater
input expressivity than the phalanxes, as they enable the thumb
to be used as an additional touch surface [31], complementing
input on the fingers. Each nail also supports several distinct touch
regions [36] in close proximity, a fact that may support more rapid
text entry times. Finally, nail wearables [63], unlike those mounted
on the inner surfaces of the fingers, do not block tactile perception
and intrinsically encumber the hand. In sum, nail input may be
able to achieve comfortable, expressive, rapid, and unencumbered
wearable text entry, a goal that is enticing and worthy of study.

2.2 Mobile Input
Mobility is a critical situational impairment for wearables. As with
other mobile device form factors [30, 47], performance in tasks
involving both viewing content [54] and performing input [13] on
wearables drops while walking. However, work to understand and
mitigate the impact of mobility on wearable interaction remains in
its infancy. The majority of work to date [57], including in the area
of text entry [1, 62], focuses on the relatively mature form factor of
the smartwatch and deals with two-handed use — the watch is worn
on one wrist and its screen tapped by the other hand. This input sce-
nario closely models, and the reported results unsurprisingly follow,
those for two-handed smartphone use [45]. While some work, such
as Boldu et al. [8]’s touch-sensitive ring, which supports reliable
input of swipes during a range of mobility conditions, highlights
the potential for reliable wearable input while moving, we are not
aware of work that empirically examines text entry while mobile on
wearable devices other than the smartwatch. Indeed, researchers

have recently identified exploring the performance of wearable
typing systems while mobile as a key area for future work [29].

The studies in this paper are the first to address wearable, single-
handed text entry while mobile. We seek to complement prior
work on single-handed wearable text entry, which has focused
on encumbered use — situations in which either one [19] or both
hands [73] are occupied but the user is stationary. While this prior
work demonstrates effective and elegant solutions for hands-busy
use, we argue that many of the techniques it relies on, such as
motion-based input [19] or micro-movements of the thumbs [73],
will lose effectiveness in genuinely mobile settings. Walking will
likely interfere with motion input, magnify the impact of encum-
brance [48] and disturb acquisition of small targets [2], factors that
suggest that the ability of these previously proposed techniques
to support reliable and effective input while users are on-the-go
may be extremely limited. On the other hand, we argue that the
intra-hand touches we study, based on relatively large motions of
all fingers relative solely to one another, may be highly resilient to
the impact of walking [8]. A major goal of this paper is to establish
the veracity of this claim.

2.3 Keyboard Optimization
In order to design a text entry technique, the letter assignment
problem [16] refers to the process of allocating characters to input
actions [78]. Key factors constraining this process are the num-
ber of characters that need to be supported and the number of
input actions that are available. In wearable text entry systems,
the number of input actions is typically less than the number of
characters [27, 71, 74]. Input actions are therefore associated with
multiple characters and word prediction techniques [14] are used
to disambiguate input and enable accurate text entry. It is com-
mon to view the letter assignment problem as one of the multiple
objectives, with different possible character arrangements result-
ing in different (and usually conflicting) performance profiles in
terms of metrics such as text entry speed [43], input accuracy [19],
comfort [38], word-level accuracy [40], or similarity to existing lay-
outs [4], among others (see [16] for a full review). Multi-objective
optimization, using processes such as evolutionary algorithms [58]
or branch-and-bound integer programming [32], provides tools
to help designers balance these concerns and select keyboard lay-
outs that achieve a desired balance between objectives. They have
been widely deployed to, for example, tweak QWERTY to boost
performance without requiring retraining [5], reduce ambiguity
in gesture keyboard designs [58] and improve the placement of
infrequently used special characters [16]. In this paper, we leverage
these methods by deploying an evolutionary algorithm to evaluate
candidate key assignments on our wearable and mobile text input
system in terms of input speed, comfort, accuracy, and the ability
to uniquely specify words.

3 EXPERIMENTAL PLATFORM
All work in this paper used a set of five fingernails mounted capac-
itive sensors to track inter-hand touches, an approach also used
by Lee et al. [36] and, in single nail systems, also by both Kao et al.
[31] and Lee et al. [37]. We selected this approach as it supports rel-
atively fine-grained tracking of up to five touches to each nail [31].



CHI ’21, May 8–13, 2021, Yokohama, Japan DoYoung Lee, Jiwan Kim, and Ian Oakley

Furthermore, an informal comparison of published data characteriz-
ing the comfort of nail touches [36] against that for finger phalanx
touches [27] suggests the former may be more comfortable for
users. In addition, we expected that the reliability and robustness of
capacitive sensing solutions would be greater than that of camera-
based solutions—these remain at an early stage of development and
while body-worn systems have been presented [59], even relatively
recent work on text entry has relied on research-grade external
motion capture systems [15] to support the high level of fidelity
required for rapid, unambiguous sequences of input. In contrast
the nail based capacitive sensing system we used is fully wearable
and does not limit the user movement range.

We based our system on that presented by Lee et al. [36] and refer
interested readers to this prior work for amore complete description.
In brief, our sensor is composed of five separate modules, each
attached to the nails of one hand. The modules consist of flexible
PCBs (0.3 mm thick) mounted on commercial cosmetic nails and are
attached to a user’s nails using a standard fixative. Each nail has nine
individual capacitive touch electrodes arranged in a square grid,
bar the little finger whose narrower form supports six electrodes
in two columns. Electrode sizes range from 3.8mm (on the fingers)
to 4.8mm square (on the thumb). At the base of each nail sensor,
each flexible PCB extends over the distal phalanx of the finger and
contains an MPR121 micro-controller. This monitors the electrodes,
reporting contact data in the form of an analog "touch heatmap" [72]
at 100 Hz. During each sensor read, these heatmaps are processed
to extract the largest contact region (via blob detection). We then
calculate image moments to describe the region’s centroid, angle,
and dimensions. The centroid is considered the contact point on the
nail. Each MPR121 is wired to a wrist-mounted Arduino MKR1010,
via AWG32 gauge wires that do not restrict finger movement. The
Arduino communicates with WiFi and UDP to a host computer. In
terms of feedback, all studies reported in this paper used an Epson
BT 200 Head Mounted Display (HMD) to present instructions and
interfaces to users. This device provides a 23° field of view and a
30Hz update rate. All visual content on this device was controlled
by the host computer via a wireless UDP connection. Figure 1 (c)
shows a user’s hand wearing the nail sensor.

4 METRICS STUDY
This study was designed to contrast performance with intra-hand
touches between stationary and mobile conditions. We sought to
document and characterize the performance changes thatmay occur
with this form of input when users are mobile. In addition, it sought
to complement existing data on the performance on individual
intra-hand touches [27, 31, 36, 59] with data on how such touches
are performed sequentially, as in a continuous process of typing.
Data about the performance of all possible pairs of inputs in a
system is required to support text entry optimization approaches
that leverage bi-gram frequencies to create efficient and accurate
input—they allow the fastest and most reliable input sequences to
be assigned to the most common character pairings [43, 78]. To
the best of our knowledge no prior work has captured a data set
characterizing intra-hand input while users are mobile, nor one that
systematically documents the performance of pairs of intra-hand
finger touches. The study was approved by our university’s IRB

and was run in full compliance with governmental and institutional
recommendations/restrictions for safety and social distancing.

4.1 Design
The study examined three independent variables: pose (sit/walk),
start-touch and end-touch. Start-touch and end-touch had ten possi-
ble levels, each corresponding to the tip or side of one of the five
fingernails. The study followed a fully repeated measures design: all
participants completed trials in all conditions. Pose was balanced,
with half the participants completing walking trials before sitting
and the other half vice versa. Each unique combination of start-
and end-touches formed a block within each pose condition. These
blocks were randomly presented to the participants. Each block
was composed of four repetitions of the start- and end-touch. The
first repetition was discarded as practice. In addition, if a partici-
pant performed the requested pair of touches incorrectly, they were
required to re-complete it. In total, this led to the retention of 600
correct trials per participant: two poses by ten start-touches by ten
end-touches by three repetitions.

4.2 Participants
A total of 12 participants (seven male, five female, eleven right-
handed and one mixed-handed) with a mean age of 23.08 (SD
1.67) completed this study using their dominant (right) hand. All
were university students. On average, they self-rated themselves as
highly familiar with computers (4.67/5.0, SD 0.65) and smartphones
(4.83/5.0, SD 0.39) but only passingly familiar with virtual and aug-
mented reality technology, such as the Epson smart glass system
used in this work (2.0/5.0, SD 0.6). The study took approximately 50
minutes to complete and each participant was compensated with
the equivalent of 30 USD in local currency.

4.3 Measures
We measured time and errors for pairs of touches. Time measure-
ments were defined as the duration between initial contact with the
start-touch finger region until initial contact with the end-touch
finger region. Errors were defined as the number of times a par-
ticipant failed to correctly select both start- and end-touch finger
regions. In addition, during the walking conditions, we measured
the overall distance participants travelled and used this to infer
their average walking speed.

4.4 Procedure
The experiment took place in an unused class room. The study
began with participants reading instructions, signing consent, and
completing demographics. They then donned the study equipment,
in the form of the nail sensor system on their right hand and the
Epson HMD on their head. In order to provide control input, such
as starting and stopping a trial, participants’ also held a wireless
mouse in their left hand, such that they could comfortably press its
buttons. Next they performed all ten single nail touches to ensure
they understand the input modality and that the system was worn
comfortably. They then completed randomly presented (and never
repeated) study trials until satisfied they were familiar with the
format and instructions (five trials on average). The actual study
trials then began. In the sit condition, participants sat in a chair
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Figure 2: Example study instructions depicting sequential
touches between different fingers/regions (left and center-
left), different regions on the same finger (center-right) and,
on the same region (right). A green dot indicates the start
touch region and two green dots signify a double-tap.

without an arm rest, while in the walk condition they continuously
walked a 30-meter figure-of-eight shaped route around a set of
desks. They were requested to walk at a comfortable speed. A break
of at least 5 minutes was enforced between the two pose conditions.

Each trial in the study followed a similar structure. First, partici-
pants clicked the wireless mouse and the experimental instructions
were shown. These depicted the start- and end-touch regions, as
highlights superimposed over a graphical image of a hand. Figure 2
shows example instructions. Participants then performed a pair
of touches, following the shown instructions, and the trial ended
and the next began. In between trials participants were able to
rest if needed. Throughout the study, participants were asked to
maintain a natural "arms down" posture, with their hand in free
space near their waist or thigh. While we did not mandate eyes-free
input, in practice this posture led, almost universally, to eyes-free
performance of the intra-hand touches (see Figure 1, a).

4.5 Results and Discussion
We recorded a total of 7653 trials, including errors. We excluded
29 trials (0.38%) due to data loss caused by system failures, leav-
ing a total of 7175 correctly completed trials and 449 error trials.
To analyze time, we initially removed outliers by examining the
correct trial data set as a whole, an intentionally conservative strat-
egy, and excluded 150 trials (2.1%) with data over three standard
deviations from the mean. We used mean imputation in the two
(0.08%) cases when all a participant’s data for a given condition was
removed. We then plotted the data: Figure 3 (left) shows the main
effects for time for all three dependent variables. Time data showed
minor violations of normality in 8% of the individual conditions
(i.e., 16 of the 200 combinations of pose, start- and end-touch). As
ANOVA is widely viewed as robust to such distortions [18, 53], we
analyzed time data using a single three-way repeated measures
ANOVA, incorporating Greenhouse-Geisser sphericity corrections
where indicated, on the variables of pose, start-touch, and end-
touch. The significant results were a two-way interaction between
start- and end-touch (F (81,891) = 7.55, p<0.001, 𝜂2

𝐺
=0.18) and in-

dividual main effects of both start- and end-touch (F (9,99) = 6.19,
p<0.001, 𝜂2

𝐺
=0.029 and F (81,891) = 12.71, p<0.001, 𝜂2

𝐺
=0.10, respec-

tively). The ANOVA did not find a significant effect of pose on the
speed at which participants performed tasks.

Errors for the 200 individual conditions were not normally dis-
tributed — all individual conditions showed a median and inter-
quartile range of zero. Furthermore, the data was predominantly
discrete, with per participant error counts for individual conditions
either zero (85.79% of trials), one (11.08%), or two (2.29%) and rarely

greater (0.84%). This meant we were unable to apply Aligned Rank
Transforms (ARTs) [70], a widely deployed technique to correct
normality violations and deploy factorial parametric statistics, as
they are designed for continuous data and inflate type I errors when
applied to discrete data [41]. Accordingly, we opted to collapse the
three individual variables and examine the main effects using non-
parametric statistics. As this entails three separate tests, we applied
an alpha value of 0.0167, equivalent to using Bonferroni correction.
The collapsed data is plotted in Figure 3. Neither a Wilcoxon test
on the pose variable (𝑊 = 60.50, 𝑝 = 0.52), nor Freidman tests
on start- and end-touch (respectively 𝜒2 = 17.6, 𝑝 < 0.04 and
𝜒2 = 10.8, 𝑝 < 0.29) led to significant differences. Finally, rather
than leave the error data interactions entirely unexamined, and
based on the presence of highly significant interactions in the time
data, we collapsed pose and performed a two-way factorial RM
ANOVA on start- and end-touch. The goal was to explore whether
the interaction in the time data was also present in the error data.
The results suggest it was: they revealed a significant interaction (F
(81,891) = 1.92, p<0.001, 𝜂2

𝐺
=0.11) and a main effect of start-touch

(F (9,99) = 2.06, p=0.04, 𝜂2
𝐺
=0.03) but not end-touch (F (9,99) = 0.33,

p=0.96, 𝜂2
𝐺
=0.005). Given the normality violations in the data, these

parametric results may have low validity. We include them as a
speculative analysis due to the particular relevance of an interaction
between these variables to work reported in this paper.

These results suggest that the main factor impacting perfor-
mance was the relationship between the start- and end-touch finger
regions—the interactions led to the largest effect sizes in the study.
Rather than depend on which finger is touched, speed (and possibly
accuracy) in the dual touch task we studied depended on the rela-
tionship between the start and end points. The confirms both our
expectations and the general consensus in prior work [38, 43, 78].
We plot these relationships, for both time and errors, by reporting
pairwise mean data in Figure 4. We opted not to conduct statistical
pairwise comparisons on this data as both a large number of tests
this would entail and the limited size/scope of our study would ren-
der these of questionable validity. Furthermore, the evidence in the
interaction effects—that the performance of sequential intra-hand
touches depends on the specifics of both start and end touches—is
sufficient to support our main experimental objective and validates
our goal of capturing data on the performance of sequential touches
in order to support the design of optimized text entry input systems
for intra-hand touch. Regardless, review of the raw pairwise means
suggests several reassuringly expected trends. We observe that
repeat selection of the same region (shown on the diagonal from
left-top to bottom-right) leads to very strong performance; there
are also noticeable benefits in sequential selection of two different
regions on the same finger over two regions on different fingers
(mean error rates of 2.58% versus 4.76% and task times of 520ms
versus 583ms); the thumb and, particularly, the little finger, situated
at the extremes of the hand, tend to yield lower performance and;
there is a general (and anticipated [27, 36]) cluster of high perform-
ing regions on the index and middle fingers. These common-sense
observations support the validity of the data we report.

In addition to these main results, we recorded an overall mean
walking speed of 2.42 km/h (SD 0.52, min 1.41, and max 3.07), almost
identical to that reported in prior accounts of mobile HMD use
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Figure 3: Box plots from the metrics study. Left shows time data from all conditions for all main effects. Right shows error
data, collapsed to the individual independent variables, for all main effects. Means are marked by ’+’ symbols.

Figure 4: Raw mean results for all combinations of start- and end-touch in the metrics study. Left shows time data (ms) while
right shows error data (%).

dealing with tasks such as reading [54]. While our study design
does not support any formal comparisons with this literature, we
suggest that the bespoke pictorial study instructions we used (see
Figure 2) are unlikely to yield a lower mental load that of the highly
practiced task of reading text. The fact that participants were able
to both process our study instructions (shown on the HMD) and
perform our input tasks while maintaining walking speeds at levels
previously recorded during solely visual HMD use suggests that the
intra-hand input we studied has limited impact on walking speed.
While future studies would be required to confirm this preliminary
suggestion, it does provide additional evidence of the viability of
intra-hand input while on-the-go.

4.6 Conclusion
We draw two high level conclusions from the study. First and fore-
most, our analysis did not find significant effects of pose on perfor-
mance. Numerically, both time and errors remained stable between
sitting and walking poses. This, combined with the representative

walking paces participants achieved, suggests that intra-hand in-
put is a good candidate modality for wearable interaction while
on-the-go. Users should be able to operate systems with intra-hand
touches when walking with much the same ease as they can while
seated. This is an extremely positive result given the widely doc-
umented performance reductions in other forms of touch input
while walking [47]. We hope it spurs future work on this modality
in mobile settings. Secondly, the relationship between start- and
end-touches matters. This is of critical importance for the typing
scenario we study as it suggests that keyboard layouts will need
to take account of this relationship in order to support good user
performance—simply applying existing (e.g., QWERTY) or default
(e.g., alphabetical) layouts that do not consider this relationship
will likely serve to limit the speed (and possibly the accuracy) with
which skilled users are able to type. On the other hand, keyboards
that ensure that commonly typed character sequences are achieved
by a series of touches that can be performed rapidly and reliably
may be able to boost performance to peak levels. The remainder of
this paper explores how this can be achieved.
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5 KEYBOARD LAYOUT OPTIMIZATION
Building on the results from the metrics study indicating the per-
formance of sequential intra-hand input varies significantly based
on the start- and end-touches, we conducted a keyboard layout
optimization process to explore the range of possible designs. We
considered hypothetical systems that are capable of detecting either
single or a pair of touches to each nail and, to provide a rounded
exploration of the space of possibilities in tractable computational
time, used genetic algorithms, specifically NSGA-II [12], to achieve
this. The goal was to generate five key (F5) and ten key (F10) layouts
that are representative of optimal performance for each of these
input scenarios. For 10 key layouts, we used the full set of data
from our metrics study. In contrast, for five key layouts we used
the subset of data from trials in the 25 conditions involving pairs
of touches to nails tips. In both cases, our process was as follows:
we first defined four metrics for assessing key layouts—speed; ac-
curacy; comfort and; confusability. We selected these metrics to
emphasize performance over concerns such as familiarity [38]. We
then performed optimization processes for each metric individually
in order to generate minimums and maximums for normalization.
Next we ran multi-objective optimization using the normalized
metrics. Finally, we used the resulting Pareto fronts, representing
the sets of solutions in which no metric is dominant, as the source
from which we selected final layouts for further study. We pro-
vide additional details on these processes in the sections below.
Furthermore, Appendix A shows the mathematical formulations.

5.1 Metrics
5.1.1 Speed. Speed metrics for letter assignment problems typi-
cally combine temporal costs for arbitrary pairs of physical inputs
with the bigram probabilities in a given text corpus. The goal is
to design layouts that minimize the time taken to enter frequently
occurring letter pairs. A common way to achieve this is via Fitts’
law (e.g., as in the Fitts-Digraph model [43, 78]), an approach that
models the time required to press pairs of keys in sequence as
a function of the physical distance between them. However, for
the type of intra-hand input we study, Fitts’ law models are inap-
propriate. The physical distances between targets (i.e., fingertips)
vary continuously due to diverse finger articulations such as corre-
lated motions—involuntarily movements occur among other fingers
during the intentional movement of one finger [76]. In addition,
transitions that involve changes in the touching finger in addition
to the touched finger (e.g., a touch to index with the thumb fol-
lowed by a touch to thumb with the index) may result in higher
costs than situations in which only the touched finger changes (e.g.,
the thumb touching the index then the middle fingers), irrespective
of their proximity. As such, rather than use a Fitts’ law derived
model, we opted for the simple expedient of a function based on
mean time costs for each possible pair of sequential inputs: the
period between initial contact with the first finger region to initial
contact with the second finger region. This approach is achievable
due to the limited number of finger regions (5 or 10) considered
in this work. Our speed function combines this data with bigram
probabilities from Norvig [49] to model the overall time cost of a
given letter assignment using the standard quadratic formulation
of this problem [16].

5.1.2 Accuracy. We modelled accuracy using a similar mechanism
to speed. We first assigned a cost for each possible pair of touches
by multiplying their individual accuracy scores together. This rep-
resents a conservative view: if one touch in a pair is wrong, both are
considered to be wrong. Using this strict metric during optimization
was intended to ensure that more challenging input pairs were not
assigned to high probability bigrams. We then combined pair input
accuracy with bigram probabilities to model the overall accuracy
cost of a given letter assignment: a second quadratic term.

5.1.3 Comfort. We used comfort ratings for nail touches from the
literature [36] and followed Feit [16]’s recommendation to treat
"ergonomic costs" such as comfort in terms of individual input
events, rather than a property that emerges from pairs of events.
The intuition here is that comfort ratings relate to the experience of
specific input actions and cannot be meaningfully combined into an
aggregate rating for a pair of actions. The cost function for comfort
was therefore formulated as a linear term: it was simply based on
the ratings for individual nail regions and the frequency with which
individual characters occurred in our corpus.

5.1.4 Confusability. In key assignments in which multiple char-
acters are assigned to each key, input is ambiguous. However, the
sparsity of valid character sequences makes such systems effective:
although each sequence of inputs can stipulate a range of possi-
ble character strings, only a small number correspond to actual
words, meaning that word-level input remains relatively unam-
biguous [14, 19, 35, 38, 56, 75]. We included an assessment of the
uniqueness of entered character sequences in our optimization pro-
cess for a number of reasons. Firstly, the number of keys in our
target F5 layout is low—it requires a minimum of five to six charac-
ters assigned to each key. This will inevitably increase the number
of valid words expressed by any given sequence of selections. In ad-
dition, our intuition was that accuracy, speed, and comfort metrics
may result in grouping frequently selected letters, such as vowels,
on the same high performing regions, an outcome that would likely
substantially reduce the word-level accuracy of an ambiguous in-
put system. Introducing a cost relating to the ability of layouts to
accurately specify word-level input should be able to mitigate these
problems and lead to layouts that balance the need to achieve a
high level of input performance (e.g., that are fast, accurate, and
comfortable) with the ability to unambiguously specify words.

A key challenge with this approach is substantial computational
resources required to calculate the word-level accuracy of ambigu-
ous character input [40]. While such computations are reasonable
for a design process that evaluates the performance of tens to hun-
dreds of manually selected key layouts [19], they are infeasible in
the genetic algorithm driven optimization process we planned. To
model this cost in a more tractable way we applied Lesher et al.
[40]’s notion of pre-calculated confusability matrices. Based on a
given text prediction algorithm, these matrices contain sums of
the frequency with which all pairs of letters are mistakenly se-
lected for each other in a given text corpus. During optimization,
the cost of a particular key assignment is then calculated as the
sum of matrix cells for all letters assigned to each key. We derived
confusability matrices using Lesher et al. [40]’s optimal k-gram
algorithm (implemented via word frequencies for the top thirty
thousand most common words from Brants and Franz [9]) and a
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322210 word corpus formed by combination of three mobile text
entry data sets [50, 64, 65]. We used these matrices to assess the
confusability of all layouts during our optimization process. This
metric serves as a final (albeit relatively simple) quadratic term in
our optimization process.

5.2 Normalization
In order to perform multi-objective optimization, all metrics need
to be normalized so that variations in the units and scales each is
expressed in do not unduly impact the process. A common way
to achieve this is via approximating the minimum and maximum
scores for each metric via independent optimization processes [58].
To achieve this, we used the NSGA-II algorithm [12] implemented
in Pymoo [6] to determine the individual minimum and maximum
scores for each of our four metrics for both F5 and F10 layouts. In
total this involved 16 separate optimization processes: four met-
rics by two layouts by two endpoints. Each process involved 100
separate optimization runs, each configured with a population and
offspring size of 300 and set to terminate after model improvements
trailed off [7]—the default. We constrained the minimum number of
letters that could be assigned to each key in both F5 and F10 to be
one and the maximum to be, respectively, six and four. We derived
these limits from the minimum numbers required to produce a valid
arrangement (i.e. six keys in F5), and the four character/key limit
used in prominent prior similar systems such as T9 [56].

5.3 Multi-objective Optimization
We used the same platform (NSGA-II/Pymoo) to conduct multiple
objective optimization using the normalized metrics for both F5
and F10 layouts. We weighted all metrics equally and followed
the same process used during normalization: 100 separate runs,
population and offspring sizes of 300, default termination criteria
and character assignments constraints of between one and six for F5
and one and four for F10. We merged the results of all runs for both
layouts, culling redundant solutions, to create four dimensional
Pareto fronts for both F5 and F10 layouts. We visualize the fronts,
composed of 3964 and 2297 layouts respectively, and in terms of
their scores for all four de-normalizedmetrics in Figure 5. Inspection
of these images reveals trade-offs between all metrics for the ten
key case, but that the metrics of time, accuracy, and comfort tended
to align for five keys. A clear trade-off was maintained between
these three metrics and confusability throughout.

5.4 Results and Layout Selection
We selected optimal key layouts through a detailed review of those
on the Pareto fronts. This was a multi-stage process. Firstly, to
better interpret speed data, we calculated the projected WPM fig-
ures [42] for all Pareto front layouts. Secondly, to better contextual-
ize the confusability metric we used, we augmented it by similarly
calculating Gong et al. [19]’s disambiguation score. This metric ex-
presses, for a given corpus of example words and dictionary of
word frequencies, the mean rate at which a specific number of
inputs on a specific key layout returns the intended example word
with the highest probability. While calculating this metric is not
computationally tractable during optimization, it is achievable for
the relatively limited number of layouts on our Pareto fronts. We

specifically calculated rates, assuming three entered keys, for which
the correct word has the highest probability (top1%), is within the
top three highest probabilities (top3%) and is within the top five
highest probabilities (top5%). The goal was to better illustrate how
a given layout may perform with respect to a text entry system
capable of recommending lists of up to five high-frequency words
for selection during typing. We note this analysis supported the
validity of [40]’s confusability metric: over both F5 and F10 Pareto
front layouts, Pearson correlations with top1, top3 and top5 scores
showed very strong relationships of between 0.949 and 0.988. Fi-
nally, we created Q5 and Q10, baseline qwerty-inspired designs
for our five and ten key form factors (see Figure 6) and calculated
scores for these on all metrics—see Table 1 for details. The goal of
these activities was to provide a context for selecting novel designs.

We then reviewed all metrics for saliency. As shown in Figure 5,
accuracy was generally high and did not vary substantially (95.6%
to 99.4%) across either Pareto front; as such, we did not consider
it during layout selection. In contrast, speed (450ms-563ms), com-
fort (3.73/5-4.67/5) and confusability (25512-353001) varied more
considerably, with particularly clear trade-offs between layouts
that achieve greater input speed and comfort and those that have
reduced confusability. Based on the relatively strong performance
of qwerty baselines in terms of confusability, we opted to select F5
and F10 layouts that emphasize improved user experience in terms
of fast and comfortable input, while maintaining the best possible
confusability (and thus top1, top3, and top5) scores. Figure 6 shows
the final selected layouts and Table 1 their scores on all metrics. We
note that both F5 and F10 target 10% or greater improvements in
both speed and comfort over QWERTY designs. We also highlight
that while the F10 layout achieves relatively strong performance
in terms of confusability, when compared to similar single-handed
wearable input systems in the literature (e.g., 85.9% top1 and 95.3%
top3 scores for Gong et al. [19]’s WrisText versus 88.1% and 97.7%
for F10), the low number of keys on the F5 inevitably compromises
performance (to 70.1% and 88.6%) on this metric. In order to be
usable, F5 would require support from advanced word and sen-
tence level prediction techniques. We selected it for further study
in order to explore the extremes of user performance—to exam-
ine whether layouts that represent near peak values for comfort
and speed actually provide the predicted benefits when real users
actually type.

6 TEXT ENTRY STUDY
We conducted a final study to evaluate our F5 and F10 layouts
against QWERTY baselines and validate how the metrics in the
optimization process were reflected in the objective performance
and subjective comfort of mobile wearable text entry. We used a
word repetition task [5] as these can emulate expert levels of per-
formance in relatively short study sessions and prior authors have
shown they provide good estimates for performance in phrase level
text entry tasks [3, 5, 66]. Due to the lack of differences observed
in the metrics study, we opted not to re-examine the pose vari-
able and all tasks in this study were conducted while participants
were walking. The study was approved by our university’s IRB and
was run in full compliance with governmental and institutional
recommendations/restrictions for safety and social distancing.
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Figure 5: 2D projections of Pareto fronts from optimization processes for both five (in blue, top-right) and ten (in orange,
bottom-left) key layouts for all six possible pairs of speed, accuracy, comfort, and confusability metrics. In each figure, top,
right quadrants represent better performance. Large red dots indicate the locations of the F5 (in top-right charts) and F10 (in
bottom-left chart) layouts. During layout selection, speed, and comfort metrics were emphasized.

Table 1: Performancemetrics for selected F5 and F10keyboards layouts andQWERTYderived baselines.Norm columns contain
normalized scores, which are summed in the final column.

Keyboard Speed (ms / WPM) Accuracy (%) Comfort (1-5) Confusability (#) Normalized
Layout Value WPM Norm Value Norm Value Norm Value Norm Top1% Top3% Top5% Value Sum

QWERTY10 (Q10) 538 27.9 0.34 95.9 0.43 3.952 0.31 108863 0.25 91.3 98.9 99.7 1.332
F10 486 30.9 0.06 97.13 0.21 4.455 0.07 140154 0.34 88.1 97.7 99.1 0.685

QWERTY5 (Q5) 494 30.4 0.45 98.56 0.39 4.064 0.35 191122 0.17 81.7 95.1 97.8 1.369
F5 453 33.1 0.05 99.21 0.10 4.654 0.01 293959 0.42 70.1 88.6 93.7 0.582

6.1 Design
The study followed a repeated measures design with two indepen-
dent variables: layout type (qwerty/optimized) and number keys
(five/ten). All participants completed trials in all four layouts and
both variables were balanced. Specifically, half the participants
completed qwerty conditions before optimized and the other half
vice versa. Within each of these groups, half of the participants
always completed five key conditions before ten and the others ten
before five. For each condition, participants completed 20 blocks,
each containing seven trials, each involving typing one repetition
of a single word. This design, and the word set, are taken from prior
work [5, 79]. The word set is "the and you that is in of know not
they get have were are bit quick fox jumps lazy on". It contains all

the English letters and approximates both monogram and bigram
frequencies. In total, we recorded 560 trials from each participant:
four experimental conditions by 20 blocks by seven trials.

6.2 Participants
Sixteen participants (11 male, all right-handed, mean age of 24.5
(SD 3.1)) were recruited from the local university via social media
channels. As in the metric study, they were highly familiar with
computers (4.44/5.0, SD 0.73) and smartphones (4.75/5.0, SD 0.58)
but only passingly familiar with virtual and augmented reality tech-
nology (2/5.0, SD 0.73). The study took approximately 90 minutes to
complete and each was compensated with approximately 20 USD in
local currency. Furthermore, to motivate participants to make input
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Figure 6: Keyboard layouts assuming either one or two
touches each nail are possible. Figure illustrates QWERTY
inspired baseline layouts and the F5 and F10 layouts
produced via the multi-objective optimization process de-
scribed in this paper. In all layouts, little finger is shown
on the left and thumb on the right. In layouts based on two
touches to each nail, characters are shown to the side or
front of the nails to denote touches to the edge (darker area)
or tip (lighter area) of the finger.

as quickly and accurately as possible, we awarded an additional 20
USD to two top performers.

6.3 Measures
We measured input speed, accuracy, and subjective comfort. For
speed and accuracy, we used the standard metrics of Words Per
Minute (WPM) [42] and Word Error Rate (WER)[5]. For comfort,
participants completed a subjective assessment directly after every
block in each condition. Specifically, participants provided a comfort
rating on a one to five (uncomfortable to comfortable) scale, a
process modelled on that used by Lee et al. [36], the source of the
original comfort ratings used in this work. In addition, we once
again logged the distance walked in each condition in order to
subsequently calculate the walking speed.

6.4 Procedure
The study procedures, by and large, followed those used in the
metrics study - participants walked around a figure of eight in the
same classroom wearing the same equipment - nail sensor on their
dominant (right) hand, HMD and wireless mouse. The study began
by showing a visualization of the first layout (as illustrated in Fig 8)
each participant was to experience and explaining how the charac-
ters were mapped to the finger regions. In particular, in the case
of the Qwerty keyboards, additional explanations were given to
ensure participants recognized the layout. Then they entered sev-
eral (max five) randomly presented words to familiarize themselves
with the system and then started the first condition. Each condi-
tion involved display of the 20 blocks in random order. The seven
trials in each block involved display of the same word on the HMD,
which participants were instructed to type. For typing feedback, we
followed prior work [19, 71] by showing the first character on a key
for the initial keystroke (e.g., C for F5 thumb) and the most likely
word prefix for all further keystrokes. In the study, as we sought
to verify whether our optimized layouts resulted in increased per-
formance and/or comfort in a simplified task (as in [5]), we did not
provide facilities for correcting errors. Rather, participants were
simply instructed to type as rapidly and accurately as possible,
without rectifying any mistakes. Individual trials were separated by

breaks in which the participants were required to click the wireless
mouse to move on. After completing a block, participants entered
a comfort rating. As they were mobile, this frequent process was
integrated into the wearable input system: participants tapped their
thumb to indicate a very comfortable experience (5/5), their little
finger to indicate a very uncomfortable one (1/5) and their other
fingers to indicate the intermediary ratings. After completing each
full condition, there was an enforced break (minimum 2 minutes).

6.5 Results
We first processed the 8960 trials recorded in the study by excluding
the 330 outliers (3.3%)with aWPMover 3*IQR apart from the 1st and
3rd quartile. Forward fill imputation was used to ensure we retained
complete pairwise data for all layouts and participants.We then plot-
ted theWPM andWER data by repetition—see Figure 7 (left and cen-
ter). These show substantial improvements during early repetitions,
as the time spent in processes such as visual search reduces, and sta-
ble performance during latter repetitions as physical limitations be-
come the constraining factors [5]. As our interest was in expert level
performance, we conducted two-way RM-ANOVA on data from the
final three repetitions for both WPM and WER metrics. These data
are shown in Figure 7 (left-center and center-right). WPM showed
no interaction, but significant main effects of type (F(1,15)=4.59,
p<0.05, 𝜂2

𝐺
=0.23) and keys (F(1,15)=79.1 p<0.001, 𝜂2

𝐺
=0.84). WER

showed an interaction (F(1,15)=7.54 p<0.001, 𝜂2
𝐺
=0.33) and also,

again, main effects of type (F(1,15)=7.56, p<0.05, 𝜂2
𝐺
=0.34) and keys

(F(1,15)=65.2 p<0.001, 𝜂2
𝐺
=0.81). In addition, we conducted RM-

ANOVA on the mean comfort ratings (Fig 7, right). The interaction
was significant (F(1,15)=20.2, p<0.001, 𝜂2

𝐺
=0.02), as was the main

effect of keys (F(1,15)=67.68, p<0.001, 𝜂2
𝐺
=0.14).

Interpreting these results, we note the prevalent significant ef-
fects and particularly large effect sizes for keys indicate very robust
performance improvements, at least in terms of speed and accuracy,
when dropping to one key per finger from two: minimizing the
number of keys per finger is a desirable approach for future systems.
Furthermore, the moderate effect sizes for type suggest that the
optimization process we conducted, and layouts we selected, were
able to improve over baseline designs. Specifically, F5 improved by
9.47% (WPM) and 23.68% (WER) over Q5, and F10 by 10.45% (WPM)
and 39.44% (WER) over Q10. These represent meaningful perfor-
mance boosts. In addition, we saw few benefits of the QWERTY
layouts in the early trials in each block—initial performance and
learning curves were not noticeably better. We suggest participants
were not able to map their knowledge of QWERTY to the form
factor of their fingers and there may be few advantages to pursuing
such layouts in the type of wearable system considered in this pa-
per. The interaction effects can largely be explained by differences
between F10 and Q10 that are weaker (WER), or absent (comfort),
between F5 and Q5. We conclude that improving layouts through
optimization was somewhat less impactful in the five key case.

It is interesting the highlight how the study results either con-
firm or refute our expectations. Based on our optimization and
layout selection process, we expected to see improvements in speed
and comfort but not accuracy over qwerty baselines. While speed
improvements materialized, these also translated into unexpected
benefits in terms of accuracy, but comfort was not strongly boosted.
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Figure 7: WPM (left-two), WER (center, center-right) and comfort (right) results from the text entry study. Line charts show
how mean performance for each metric changes with repetition number. Box plots for WPM and WER are derived from data
from the final three repetitions and represent expert performance. Comfort box plot summarizes all data.

Possible explanations for this may be that our metrics study failed
to model the challenges, in terms of accuracy, of finger typing.
Longer sequences of inputs may be required for this. In addition,
the comfort ratings we used were extracted from a prior article
dealing with individual touches to the nails [36]. These may not be
directly applicable to the continuous input scenario we studied. As
comfort is acknowledged to be an important factor in intra-hand
touch input [29, 38], further work to understand how to best model
comfort during wearable typing is currently required.

Finally, we note that the overall mean walking speed was 2.43
km/h (SD 0.61, min 1.49, and max 3.48), closely following that
reported in the metrics study. This suggests that the word input
task has a limited impact on walking speed and that our text entry
system may be suitable for users on-the-go.

6.6 Discussion
It is worth contextualizing the results from this study with prior
work that uses similar assessment methods [5], a similar single-
handed text entry scenario [29, 38, 71] or addresses wearable text
entry on-the-go [1, 62]. While no other work exists at the overlap
of these three spaces, we are able to draw a number of interesting
parallels and conclusions by examining each issue in turn. In terms
of methods, Bi and Zhai [5] use a similar repeated word entry task
for evaluating gesture typing keyboard layouts. Their findings align
well with ours: text entry times stabilize from the third repetition
and mean WER reach as high as 13.54%, figures similar to ours
and due, at least in part, to the fact the task restricts participants
from correcting errors. While it is not possible to draw strong
performance parallels between such different input methods, these
similar trends do suggest our methods did enable us to capture
performance indicative of genuine expert use.

We can make more direct comparisons with work on in-hand
text entry: using variations on single-handed taps to the finger
phalanxes, Wong et al. [71], Lee et al. [38] and Jiang et al. [29]
report input speeds of between 5.42 and 9.28 WPM. While the
speeds reported in our study (between 22.38 and 31.3 WPM) clearly
exceed these figures, this positive contrast must be considered in the
context of study tasks used. These prior projects have sought to train
users on keyboard layouts, over periods where that learning process
is likely incomplete. As such, the performance they report does not
represent the type of expert use we study—it is more likely "hunt
and peck". In addition, our lab-based methods may overestimate

the ability of skilled intra-finger typists. Regardless, our work does
point towards appropriate strategies for maximizing performance
in this area: reduce the number of different input actions by using
ambiguous keyboards; focus on the most comfortable and easy to
reach finger regions; optimize keyboard layouts; expect few benefits
from using existing layouts such as QWERTY and; do not rely on
prolonged or challenging input (e.g., pressure [38, 71] or multi-stage
selection [29]).

Finally, in terms of mobility, prior work has established times for
touchscreen typing on smartwatches: 9.019WPM [1] in conjunction
with smartglasses and 18-30 WPM using a range of input types on a
standalone watch (handwriting recognition, keyboard and gesture
keyboard) [62]. While this two-handed input differs greatly from
that studied in this paper, we again note our one-handed WPMs
contrast relatively well and suggest that in-hand typing interfaces
may be a particular viable design candidate in this area. Rather than
write on the tiny screen of your watch, it may be better to simply
type with your hand [73, 74].

7 TEXT ENTRY SYSTEM DESIGN
Building on the positive results of this study, we developed a full
text entry system for nail based in-hand input. This used the F5
layout based on its strong performance in terms of speed, accu-
racy, and comfort. We added space and delete functionality using
chords, or touches to a pair of fingers, and simple gestures [36].
Specifically, the space key was assigned to a simultaneous touch
to index and middle fingernails and delete to touch to middle and
ring nails. In order to facilitate rapid access, space and delete could
also be redundantly accessed by swipes left and right over any nail.
In addition, we developed a word suggestion and auto-complete
system [19] capable of displaying the top five most likely words
based on the currently typed characters. These suggestions were
displayed above each finger in the HMD interface and could be
selected by a dwelling (for 500ms) on the associated nail. Finally,
alternative key layouts, such as for numbers or punctuation, were
toggled by closing and re-opening the fist, an action that simul-
taneously triggers touches to all four fingernails. By integrating
these diverse input modalities [36] (e.g., chord, dwell, and swipe) it
was possible for the system to provide full keyboard functionality
using only the nail sensors. Figure 8 shows an overview of this sys-
tem. The next step for this project is to evaluate this full featured
wearable text-entry system.
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Figure 8: Nail touch based text entry system for mobile typing. It extends the system used in the study by integrating required
keys (e.g., space, delete), a word selection interface and a hand close gesture to access a numeric keypad.

8 LIMITATIONS
A number of limitations impact our work. Many relate to its scope.
At the highest level, we do not consider the broader implications of
using wearable devices while mobile; we just focus on the typing
experience. However, typing, or working with text in general, may
exact a toll in terms of mental workload that would have implica-
tions in terms of, for example, safety. This may, in practice, preclude
the design of such systems. While our work is motivated by the
real world prevalence of mobile smartphone typing, the frequency
with users genuinely would (or should) type on wearable devices
is currently unknown: existing research on wearable device use
patterns is relatively sparse and limited to the smartwatch form
factor [28, 44]. Our studies could also be broader in scope. For ex-
ample, we limited ourselves to two touches per finger, and focused
on nail touches. While these are reasonable in terms of scope for a
single paper, it would be interesting to explore systems that support
more touches (e.g., five [31]), and/or other finger regions (e.g., the
inner phalanxes [27]) and sensing systems [59]. Furthermore, our
final study used only QWERTY derived baselines; another obvious
baseline to study is alphabetical, a form used in prior predictive
systems such as T9 [56]. Additionally, it would be valuable to com-
pare performance directly against other current systems, such as
head gaze or hand pointer-based keyboards. Longer multi-session
text entry studies [22] capable of documenting learning curves and
true expert performance with our layouts and system would also
effectively complement the studies presented here. Furthermore, a
study including the word suggestion and auto completion system
and other keyboard functions (e.g., delete, space, and mode change)
will generate valuable data about performance of more complex,
realistic, and naturalistic typing tasks.

In addition, our optimization process could also be extended. For
example, we could use alternative optimization approaches capable
of guaranteeing the quality of solutions in terms of provably cor-
rect bounds [32]; we could apply weights, in a grid search pattern,
to our multi-objective optimization process to more completely
populate the Pareto set of solutions [58] and; we could conduct
extended manual local searches in the regions around returned
solutions—such structured local searches may improve the quality
of the results [52]. Finally, we could also extend our treatment of
mobility to consider other scenarios, such as travel or public tran-
sit [25], or conduct studies in-the-wild, in genuinely mobile settings

(rather than the lab). Exploring the viability of wearable text entry
in a broad range of mobile scenarios would be highly valuable.

9 CONCLUSION
This paper argues that text entry systems on wearables need to be
designed to support mobility. Aswith smartphones, designing solely
for stationary settings will result in systems that achieve low levels
of performance when users inevitably opt to use them while mo-
bile [30]. The resulting increased workload and frustration will lead
to poor user experiences and potential societal harms—wearable
device use while mobile may become unnecessarily hazardous. We
explore the design of wearable text entry systems by document-
ing performance with the promising modality of intra-hand input.
Our initial study confirms our expectations about the robustness of
intra-hand input under mobile conditions. Contrasting walking and
standing, our tests find no significant effects on performance for
both input times and error rates. Building on these positive results,
we conduct a multi-objective optimization process that seeks to
balance the properties of input speed, accuracy, comfort, and ability
to unambiguously specify words. We ultimately select two layouts:
F5 that relies on a single touch to each finger and F10, which as-
sumes two touches to each finger can be detected. Our selection
process emphasizes the speed and comfort of input while seeking
to minimize reductions in the ability to unambiguously specify
words. A second study shows these layouts provide performance
improvements over QWERTY inspired baselines: they are up to
10.45% faster and 39.44% more accurate. While their ambiguity is
increased (by 14.2% to 0.6% in terms of Gong et al. [20]’s disambigua-
tion score) compared to QWERTY designs, we close by presenting
the design of a word completion system that for our intra-hand
input modality that we believe can mitigate these concerns and
ensure users can achieve rapid, comfortable and accurate text entry
performance using a wearable input device and while mobile.
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A OPTIMIZATION PROCESS
This appendix includes objective functions used during the overall
process and for each of the individual metrics. We recommend
Feit [16] for a more comprehensive review and discussion of each
of the individual metrics.

A.0.1 Objective function. The objective function for the overall
optimization process is:

𝑂 (𝑙) = (1 − 𝑡𝑖𝑚𝑒 (𝑙)) + 𝑎𝑐𝑐 (𝑙) + 𝑐𝑜𝑚𝑓 (𝑙) + (1 − 𝑐𝑜𝑛𝑓 (𝑙)) (1)

where our overall goal is to minimize the time costs, maximize the
accuracy, maximize the comfort, and minimize the confusability of
layout 𝑙 (all metrics are normalized).

A.0.2 Speed. Speed was a quadratic term in our optimization pro-
cess:

𝑚𝑖𝑛

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑀∑
𝑘=1

𝑀∑
𝑙=1

𝑝𝑖 𝑗 𝑡𝑘𝑙𝑥𝑖𝑘𝑥 𝑗𝑙 (2)

where 𝑥𝑖𝑘 , 𝑥 𝑗𝑙 are binary decision variables indicating that a symbol
𝑖 ( 𝑗) is associated with a nail region 𝑘 (𝑙), 𝑝𝑖 𝑗 is the frequency of the
letter pair 𝑖 𝑗 , and 𝑡𝑘𝑙 is the mean time it takes to touch nail region 𝑙
after touching nail region 𝑘 . We have a 26 letters (N) with 5 or 10
nail regions (M).

A.0.3 Accuracy. Accuracy was a second quadratic term:

𝑚𝑎𝑥

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑀∑
𝑘=1

𝑀∑
𝑙=1

𝑝𝑖 𝑗𝑎𝑘𝑙𝑥𝑖𝑘𝑥 𝑗𝑙 (3)

Terms are identical to equation (2) save for 𝑎𝑘𝑙 , defined as the mean
accuracy of touching nail region 𝑙 after touching the nail region 𝑘 .

A.0.4 Comfort. Comfort was a linear term:

𝑚𝑎𝑥

𝑁∑
𝑖=1

𝑀∑
𝑘=1

𝑝𝑖𝑐𝑘𝑥𝑖𝑘 (4)

where 𝑥𝑖𝑘 is the binary decision variable denoting whether or not
a symbol 𝑖 is mapped to an input action 𝑘 , 𝑝𝑖 the frequency of the
symbol 𝑖 , and 𝑐𝑖 the comfort rating of touching the nail region 𝑘 .

A.0.5 Confusability. Confusability was a third quadratic term:

𝑚𝑖𝑛

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑀∑
𝑘=1

(𝐶𝑖 𝑗 +𝐶 𝑗𝑖 )𝑥𝑖𝑘𝑥 𝑗𝑘 (5)

where 𝐶 is a confusability matrix [40] containing how frequently a
symbol i is wrongly predicted to be a symbol j (for a given word
prediction algorithm and data set) and 𝑥𝑖 𝑗 , 𝑥 𝑗𝑘 are binary decision
variables that denote whether the two symbols are assigned to the
same nail region (𝑘)
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