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ABSTRACT
Wearable head-mounted displays combine rich graphical out-
put with an impoverished input space. Hand-to-face gestures
have been proposed as a way to add input expressivity while
keeping control movements unobtrusive. To better understand
how to design such techniques, we describe an elicitation
study conducted in a busy public space in which pairs of users
were asked to generate unobtrusive, socially acceptable hand-
to-face input actions. Based on the results, we describe five
design strategies: miniaturizing, obfuscating, screening, cam-
ouflaging and re-purposing. We instantiate these strategies in
two hand-to-face input prototypes, one based on touches to
the ear and the other based on touches of the thumbnail to the
chin or cheek. Performance assessments characterize time and
error rates with these devices. The paper closes with a valida-
tion study in which pairs of users experience the prototypes in
a public setting and we gather data on the social acceptability
of the designs and reflect on the effectiveness of the different
strategies.

Author Keywords
Hand-to-Face Input; Social Acceptability; User Elicitation;
Augmented Reality; Head Mounted Display

INTRODUCTION
Augmented Reality (AR) Head-Mounted Displays (HMDs)
are an emerging consumer technology that promise to im-
pact activities as diverse and fundamental as education [27],
accessibility [14], health care [37] and entertainment [34].
Understandably, AR has long attracted attention in the Human-
Computer Interaction (HCI) research community [3]. How-
ever, while aspects such as tracking fidelity, display quality and
computing power have advanced considerably to produce to-
day’s high-end products, input and interaction technologies are
less mature. Current commercial systems feature on-headset
touch surfaces (e.g., Google Glass) or hand controllers in
the form of touchpads (e.g., the Epson BT-300) or hand-held
clickers (e.g., Microsoft HoloLens) as key interaction chan-
nels. While these systems can be effective, they offer limited
input areas and, in the case of hand-held controllers, are cum-
bersome additional devices that disrupt or preclude system use
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during mundane, everyday tasks and activities in which the
hands are busy.

Recognizing the need for input systems for AR glasses that
leave the hands unencumbered, a considerable body of re-
search has explored topics ranging from wearable peripherals,
such as belts [8] or rings [9], to in-air gestural input [13] and
on-body touches [35]. One focus for work in this latter area
has been on using the face as a site for input – what Serrano
et al. [31] term hand-to-face input. The face is appealing as
it is easy to access with a touch, typically unobstructed by
garments and proximate to smart glass hardware. Facial touch-
ing is also a common human behavior [24]. Prior work has
shown that input on the face can be useful in tasks such as
navigation, video browsing [31] or basic selection and point-
ing [32] through schemes such as swiping and tapping on the
cheek [31], thumbing the nose [19] and stroking the hair [6].

While this work effectively demonstrates the viability and di-
versity of hand-to-face input, it is also fragmented, piecemeal
and technologically opportunistic. By this we mean that pro-
posals typically target highly specific body sites such as the
ear [17], nose [19], cheek [43] or hair [6] with the goal of
exploring interactions that can be effectively performed by
users and detected by a predetermined sensor setup, such as
electrooculography (EOG) glasses [19], optical range finder
arrays [43] or capacitive braids [6]. We argue there is a need to
improve our understanding of how users conceive of touches
to the face as an input modality [31] to better inform future de-
sign and development efforts. Specifically, we argue that a key
omission in our current understanding relates to the social ac-
ceptability [29] of facial touches - how comfortable users feel
performing or observing this type of input in real life situations.
This issue is particularly important as the face is an exposed,
publicly visible body region and AR systems are ultimately
intended and expected to be used in everyday settings and
spaces, situations in which many forms of publicly observable
input may be considered socially unacceptable [13].

We studied this issue in a multi-stage research process. First,
we conducted an elicitation study [41] of input via facial
touches with pairs of users in a public setting – a coffee shop.
Users created and rated interface proposals according to how
comfortable they felt performing them in various settings [1].
We contribute both this novel combination of elicitation and
social acceptability methods and the study results in the form
of strategies for designing socially acceptable hand-to-face
input techniques for AR/wearables. Building on these strate-
gies, we then created, implemented and evaluated two input
systems, one based on camera tracked touches to the ear, the
other on a touch-sensitive thumb nail. These activities con-



tribute a novel sensing setup (camera tracking of touches to
the ear) and input approach (nail to face touches) as well as
empirical characterizations of user performance and recom-
mendations for how these systems be configured to support
effective, expressive input. We close the paper with a study in
which participants used our techniques in a public setting and
contribute a qualitative assessment of their social acceptability
that serves to validate the techniques with respect their original
design intentions. In this way, we showcase the value of our
design strategies for creating socially acceptable hand-to-face
input techniques for AR/wearables.

RELATED WORK
There is a large and rapidly growing literature dealing with
on-body input. One key focus is on developing sensing solu-
tions based on, for example, signals that propagate through
the body [11], camera-based tracking [4], or thin sensing
films [39]. While most of this work focuses on point touches,
researchers have also emphasized that much more can be done
with the skin. It is highly flexible and readily deforms, provid-
ing additional channels for input [26]. For example, Weigel et
al. [38] applied elicitation methods to understand the potential
of skin deformation for interaction design, highlighting its
emotionally rich and evocative qualities.

While the majority of this work focuses on the hand or forearm,
touches to the face are a common behavior that interaction de-
signers can also leverage. Basic studies of face touching behav-
ior indicate it occurs frequently – at rates of 15.7/hour for the
mouth, eyes and nose [24] through 24/hour [18], 40/hour [7]
and up to 54.3/hour for the whole face [12]. In early work
to explore the value of these touches for device input, Ser-
rano et al. [31] conducted an elicitation study and concluded
that fairly standard finger strokes (swipes, two-finger pinches
and circles) on the cheek were an optimal design candidate.
Subsequent studies characterized empirical input performance
(using a high end optical motion capture system) and a lab-
based assessment of social acceptability indicated participants
felt that smaller and simpler gestures such as swipes were
unlikely to attract undue attention.

Recent work has focused on taking hand-to-face input out
of the lab by broadening the design space and constructing
viable sensing systems. This later task is challenging and the
expressivity of current systems is low. For example, Lisser-
man et al. [20] created an array of capacitive sensors that fit
behind the ear; they reported that two touches to the ear can be
detected accurately (99%) but performance with three or more
touches drops steeply (to 86.6% or lower). Kikuchi et al. [17]
expand on these ideas with a system that uses in-ear optical
sensors to detect five ear deformations – four directional pulls
and a press – with an accuracy of up to 89.56%. Yamashita
et al. [43] describe a broadly similar system that deploys an
array of optical sensors embedded in glasses, and focused on
the skin of the face, to track five pushes to the cheek with an
accuracy of 89.8%. In closely related work, Lee et al. [19]
use off-the-shelf EOG glasses to detect five actions (rubs and
left/right flicks and pushes) on the nose with an accuracy of
up to 96%. Finally, Dierk et al. [6] present a proof of concept

system featuring actuated hair braids that use swept frequency
capacitive sensing to detect touches along their length.

While much of the practical work in these projects involves
building effective input technologies, a key goal underlying
their explorations of hand-to-face input is the idea that it is an
appropriate way to interact in public settings. For example,
Lee et al.’s [19] primary motivation for their system is to cre-
ate discreet input primitives, while Dierk et al. [6] stress the
public and social aspects of hair in the design guidelines that
informed their prototype and Kikuchi et al. [17] are inspired
by the idea that the ear can be touched "naturally without
worrying about provoking stares". While the inherent unobtru-
siveness, subtlety or social acceptability of hand-to-face input
is an appealing idea that is well grounded in the literature
capturing the regularity of facial touches, we note is a largely
unexamined assertion – it has tended to be claimed rather than
assessed. In other words, despite a growing research interest
in developing hand-to-face input systems, there is a lack of
design knowledge about the types and forms of hand-to-face
touch that are appropriate for public settings.

Subtlety, Unobtrusiveness and Social Acceptability
Although they have seen scant attention in studies of hand-to-
face input, issues of subtlety, unobtrusiveness and social ac-
ceptability have attracted research attention in closely related
areas. Early work emphasizing the subtlety [5] and unobtru-
siveness [28] of input actions focused on wearable technology
and argued these qualities are requirements to achieve social
acceptability. The subtlety of an interface has also been opera-
tionalized as the frequency with which it can be used without
an observer noticing [2]. Building on these ideas, social accept-
ability has been defined as whether an input action is deemed
appropriate by both the user issuing it, and observers watching
it, in the context in which it occurs [21]. It has been applied to
assess the viability of general body gestures (e.g., foot tapping
or head nodding) and mid-air gestures of [29], or around [1],
mobile devices. This work typically shows a predetermined
set of gestures to participants via video, or requires them to
enact such a set. Participants then rate where (e.g., home,
restaurant, workplace) and in front of whom (e.g., alone, with
family, friends, strangers) they would either be willing to (or
feel comfortable performing) each gesture. This approach has
generated a range of useful outcomes. Rico et al. [29], for
example, highlight the importance of subtle, comprehensible,
and familiar movements in maximizing social acceptability,
while Ahlström et al. [1] provide concrete recommendations
for creating socially acceptable in-air gestures based on prag-
matic qualities such as gesture size, location, and duration and
Montero et al. [21] provide a useful classification of gesture
social acceptability based on the whether the input actions
and/or resultant outcomes are observable.

HAND-TO-FACE ELICITATION STUDY
Elicitation studies involve participants creating input actions
for a given set of tasks [41]. The resultant actions are analyzed
for factors such as their agreement across participants [33]
and categorized according to salient design properties, such
as their form or complexity [30]. This study sought to un-
derstand how users conceive of hand-to-face input in a social



setting. It moves beyond prior work [31] by focusing on social
acceptance and unobtrusive or subtle actions during the input
creation phase and by including an evaluation of these quali-
ties by both participants and observers. In this way, it seeks to
generate design knowledge that can support creation of novel
socially acceptable input techniques for AR/wearables.

Experimental Design, Tasks and Setting
Study tasks were adapted from prior work [41, 31] and are
shown in Table 1; each participant was asked to generate hand-
to-face input actions for each task. Following Morris [22], we
deployed three methods to improve study outcomes: produc-
tion, priming and partnership. Production relates to generating
multiple proposals; participant’s generated two and selected a
favorite. Priming involves providing illustrations and exam-
ples to help participants move beyond existing designs from
other contexts. We achieved this by showing participants a 90
second video depicting a wide variety of hand-to-face input ac-
tions, which they were encouraged to try out, and giving them
a demo of the Microsoft HoloLens. Finally, partnership relates
to performing elicitation activities in groups. We achieved this
by recruiting pairs of participants (all strangers) and having
them generate interface proposals alternately – this enabled
them to build and reflect on their partner’s ideas.

To focus the study on social acceptability, we further adapted
typical elicitation methods. To improve the ecological validity
of the proposed actions, the study was conducted in a busy
public place – a coffee shop. Participants were also instructed
to generate unobtrusive or subtle actions, suitable for use in
the public setting of the study, and both they and their part-
ners rated all favored input proposals for social acceptability
and how obvious the input action was. This provided both
author and observer perspectives on social acceptability [29].
To assess social acceptability, we used Ahlström et al.’s [1]
questionnaire; this asks what situations and individuals a par-
ticipant would feel comfortable performing an action in. For
obviousness (or unobtrusiveness), we adapted the social ac-
ceptability questionnaire to ask in which locations an action
would be obvious. We also included a seven-point Likert scale
rating actions from "not obvious" to "very obvious". In total,
participants answered four questions per favorite input action
generated by both themselves and their partner.

Participants and Procedure
Twenty participants (10 males, mean age 22.6, one left-
handed) completed this study in ten pairs. All were either
students or recent graduates at UNIST and they were compen-
sated with approximately $15. Participants self-rated as highly
familiar with smartphones (4.5/5) and computers (4.5/5), but

Table 1. Task list used in elicitation study
Task Type Tasks

Open Close Select
System Delete Accept Decline

Copy Paste Take Photo

Next Previous Pan (any direction)
Navigation Zoom in Zoom out Rotate clockwise

Rotate anti-clockwise

had no or limited experience of HMDs and AR. Each study
session began with an introductory video showing example
actions and a demo of the HoloLens. Participants then began
generating and rating input actions, alternating making the
initial proposal with their partner. Half the participant pairs
generated proposals for tasks in the order shown in Table 1
and half in the inverse order. While generating proposals, they
were encouraged to think aloud in order to expose their design
intentions to both their partner and the experimenters. After
both participants in a pair had generated two proposals and
selected a favorite, they rated these for social acceptability and
how obvious they were. The experiment took approximately
two hours for each pair and, in total, 320 favorite gestures
were produced: 16 tasks by 20 participants.

Results and Data Processing
Favored actions were evenly split between first (57%) and
second (43%) proposals, highlighting the value of Morris et
al.’s [22] production recommendation. We first calculated
agreement over the proposals [41] attaining an average score
of 0.082 which indicates relatively low agreement throughout
the study. Agreement scores peaked at 0.11 for the select task;
five participants chose the action of tapping the cheek. As the
goal of this study was to generate diverse proposals relating to
socially acceptable input actions, and participants’ task instruc-
tions reflected this, we do not view the low agreement scores
as problematic; the diversity they hint at is more appropriate
for our goals. Based on our goals and this outcome, we opted
not to calculate a consensus set of input actions.

We next classified actions according by the face site and hand
action used (Table 2). As in prior work [31], the cheek was
popular (27.2% in the current study vs 34% in prior work),
but our data saw more emphasis on the chin (18.2% vs 7%)
and ear (10.3% vs 7%) over areas such as the forehead (5.6%
vs 16%). This again likely reflects the differing experimental
instructions – in the current study participants tended to avoid
prominent features such as the forehead in order to generate
socially acceptable or non-obvious/unobtrusive actions. Hand
actions tended to be swipe-like strokes (27.9%), or various
forms of tap (e.g., tap, push, long-tap: 29.9%) over more
unusual types of input. A long tail of alternatives for both clas-
sifications doubtless contributed to the low agreement scores.

To aid in our interpretation of this data, we derived numeri-
cal acceptability scores from the questionnaire results from
all participants and input proposals and used these figures to
calculate means for each face site and hand action category.
Acceptability scores were generated as follows. For the three
nominal questions, participants checked between zero and
seven/eight options to represent either the situations or individ-
uals/groups they would feel comfortable performing an input
action in or in front of [1] and the situations in which an input
action would be obvious. For each question, we calculated the
percentage (0-1) categories selected. The Likert scale captured
how obvious input actions were (0-7 scale). Based on the idea
that selecting more locations/situations indicates increased so-
cial acceptability, the acceptability score was the mean of the
percentages from the nominal questions and the normalized
(0-1) score from the Likert scale. The results are shown in



Table 2. In terms of face region, the highest scores are on the
ear, neck and temple, which suggests that input areas away
from the center of the face may be appropriate for hand-to-face
designs. The lowest scores are reserved for areas such as the
hair, whole face or nose, regions where input actions were ei-
ther large or front-and-center. These trends were also evident
in the scores for hand actions – tap, a small discreet movement,
rated best, while spread, a large action involving moving all
five fingers out from a central pinch, scored poorly. Similarly,
actions such as fold, universally applied to the out-of-the-way
ear, scored highly. While we believe these ratings are useful,
one caveat to their interpretation is that they are based on vary-
ing numbers of example proposals. For example, the rating
for swipe is the aggregate of many (27.9%) proposals, while
the score for fold is derived from a handful (1.7%). Variations
in the number of input proposals in any given category is an
inevitable outcome from an elicitation study.

Generation Strategies
Building on these analyses and classifications, we sought to
understand participants’ strategies for creating socially ac-
ceptable or unobtrusive inputs by constructing a taxonomy, a
common outcome from elicitation studies [30, 41], of their
approaches. To achieve this goal, two experimenters reviewed
the proposed actions, think aloud notes, summary statistics
and questionnaire data independently, then created initial cat-
egorizations and discussed the outcomes until they reached
consensus. Ultimately, of the 320 proposals, 83 were unclassi-
fied and 237 were assessed as exemplifying one or more of the
following five strategies (bracketed figures show count, mean
acceptability score): miniaturizing (51, 0.72); obfuscating (24,
0.76); screening (27, 0.71); camouflaging (185, 0.71) and; re–
purposing (39, 0.69). The 83 unclassified gestures achieved
a mean acceptability score of 0.6 and 58 actions fell into two
categories, 11 into three and three into four categories.

The first three strategies involve hiding input actions. Minia-
turizing is simple. It relates to keeping movements as small as
possible and is closely related to previously observed strategies
to achieve social acceptability in gesture input [29]. Obfuscat-
ing represents the use of a face region that is naturally hidden
from observers in front of a user, such as the back of the neck
or, when the head is turned, the ear. Screening involves the use

Table 2. Distribution and acceptability scores for face region and hand
action in the elicitation study. Unless otherwise specified (e.g. palm,
back), all hand actions involved the finger. The 23 hand actions that
were proposed in less than 1.5% of input proposals are not shown.

Face Selection Acceptability Hand Selection Acceptability
Region Freq. Score (0-1) Action Freq. Score (0-1)
Cheek 27.2% 0.75 Swipe 27.9% 0.76
Chin 18.2% 0.75 Tap 16.6% 0.81
Ear 10.3% 0.79 Push 7.3% 0.67
Hair 7.0% 0.67 Long-Tap 6.0% 0.77
Lip 5.6% 0.71 Grab 4.3% 0.75
Forehead 5.6% 0.70 Palm-Swipe 4.0% 0.76
Neck 5.3% 0.80 Pinch 3.7% 0.79
Temple 4.3% 0.79 Flick 3.3% 0.76
Nose 4.3% 0.70 Palm-Place 3.0% 0.76
Cheekbone 3.6% 0.78 Pull 3.0% 0.75
Eye 3.6% 0.72 Palm-Push 2.0% 0.78
Eyebrow 3.3% 0.76 Spread 2.0% 0.67
Whole Face 1.7% 0.70 Fold 1.7% 0.80

Back-Swipe 1.7% 0.73
Twist 1.7% 0.70

Miniaturizing Obfuscating Screening Camouflaging Re-purposing

Pressing the 
earlobe

Tap with index 
finger while 

touching the chin

Swipe down back 
of the ear

Swipe down back 
of the head

Folding and 
hiding the ear

Tap the chin with 
thumb, while  

supporting the jaw

Touching the 
eyebrow

Touching the 
forehead

Shaking head 
while supporting 

the jaw

Touching the 
back of the neck

Figure 1. Examples of the five design strategies. Miniaturizing illustrates
small finger movements, such as taps on or presses to the skin. Obfus-
cating shows input actions intended to be hidden to the side of or be-
hind the head. Screening involves concealing input movements within
or under the hand. Camouflaging masks input actions in seemingly un-
conscious movements, such as rubbing the eyebrow or scratching the
forehead. Re-purposing relates to co-opting clear and explicit gestures,
such as nodding the head or massaging the neck, as control inputs.

of the hand to hide the input action, such as movements of the
thumb on the face while it is obscured behind the fingers. The
remaining two strategies seek to avoid arousing attention, even
if actions are observed. Camouflaging refers to creating input
actions based on unconscious or non-communicative facial
touches such as scratching the face or running a hand through
the hair. Finally, re–purposing entails using clear and explicit
intentional actions, such as nodding the head (when touching
the chin) or purposefully adjusting the hair. Figure 1 shows
representative examples of these five strategies.

CASE STUDIES
To explore the value of the data and design strategies captured
in, and derived from, the elicitation study, we developed two
prototype hand-to-face input systems. These designs directly
reflect outcomes from the elicitation study: they use the most
commonly proposed face sites and finger actions; they instan-
tiate different combinations of the design strategies and; each
prototype was adapted from specific user proposals (see Figure
1 for examples). For each prototype, we describe the designs,
implementations and empirical studies that assess if they are
effective at supporting hand-to-face input tasks.

Case Study 1 - EarTouch
The first case study is a system for input on the skin of the
ear; it builds on prior work that has explored input on this
body site [20, 17]. This site was selected as the ear was the
third most popularly selected face site in the elicitation study
and it embodies several of the design strategies. Specifically,
it supports obfuscating input, as the ear can be hidden from
an observer simply by turning the head, miniaturizing, as the
available space for input on the ear is small, and camouflaging
in that input actions could be disguised as common actions
such as scratching. Additionally, prior work on ear based
input has achieved quite limited expressivity, reporting reliable
recognition of between two [20] and five [17] input actions.
Accordingly, we sought to boost this performance.
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Pupil Labs 
eye camera

Figure 2. EarTouch device prototype. Left: targets used in the study
shown mapped on the ear. Right: tracking camera mounted to the HMD.

To achieve this our EarTouch implementation used a high
resolution, low latency camera tracking system. While this ap-
proach borrows from wearable input devices for the hand [4],
we know of no prior systems that have used cameras to track
touches to the ear. We argue a camera based approach will
increase sensing resolution while reducing weight and hard-
ware complexity compared to existing capacitative sensing
implementations [20] and that it can support detection of a
broader range of input actions (e.g. tap, dwell, swipe) than
prior work on in-ear sensing [17], which is basically restricted
to detecting large ear deformations due to actions such as bend-
ing or squeezing. Our implementation leveraged the fact that
current AR HMDs protrude from the side of the head at the
temple (e.g. HoloLens, 2.5cm) and involved mounting a back-
wards facing Pupil Labs eye camera [16] on a Epson-BT200
AR HMD to capture a clear view of the ear - see Figure 2.
We expect a camera to track the ear could be mounted within
the housing of many current HMDs. Although originally in-
tended for eye-tracking, the Pupil camera’s ball-and-socket
joint and adjustable focus lens allowed us to readily track
the ear. We configured the camera to capture 480x270 pixel
images at 30Hz and connected it to a PC to perform image
processing and extract ear touches. The PC transmitted the
resultant data to the Epson glasses in real time via OSC/UDP
over WiFi; latencies were less than 7ms, creating a smooth
user experience.

The image processing system to extract ear touches was
straightforward. After participants donned the glasses, we
manually adjusted the camera to capture the region around
the entire ear. We then extracted the ear’s rough outline by
segmenting the video feed by optical flow regions during head
movement or when objects were moved directly behind the
head. In such situations, the view of the ear is static, while the
background moves rapidly. We use this initial ear region to
sample the ear’s color hue and refine the area based on color
segmentation. Using these techniques, we achieved an easy
to acquire, reliable and stable model of the shape of the ear.
Additionally, we were able to re-use the hue data from the ear
to capture the location of touching fingers as they came into
contact with the ear; ear and finger skin were relatively similar
in hue. Based on this approach, we defined the touch contact
location as the normalized point at which the largest finger (or
skin hue colored region) intersected the ear outline. To smooth
irregularities in this data, we applied a linear easing function
prior to sending it to the Epson glasses. We also discarded the
first and last 100ms of finger contact data in order to focus on
the stable central period of each touch [36].

(a) (b)

D1Small Large Cursor D2 D3 D4 D5

Tap condition Pan condition

Figure 3. Interface for EarTouch study showing (a) tapping task inter-
face for size and feedback variables and (b) panning tasks interface for
shortest (D1) to longest (D5) distances in the upwards direction.

Performance Study
To evaluate performance of this system we used two basic
input tasks: tap (selecting a target) and pan (moving a cursor
from a start to an end location). For the tap task we stud-
ied three variables: tap-technique (three levels); target size
(two levels) and; target location (six levels). The three tap-
techniques were adapted from work on HMD touch input [10].
They were landOn, which triggered a selection event on an
initial touch, liftOff, which triggered selections on removing a
finger and dwell, which triggered selections after a participant
remained on a target for 400ms (a typical value for touch in-
put [23]). Levels for the target size and location were selected
(via pilot tests) to be challenging but achievable. The six target
locations were equidistantly spread along the whole ear while
the two target sizes were large, set at 1/6 of the ear size, and
small, set as 1/12 of the ear size. The interface for this task is
shown in Figure 3.a. A line depicts the ear, with the current
target area highlighted. In the liftOff and dwell conditions a
cursor showed the location of a touch in this space.

The panning task followed a similar design: three pan-
techniques by five pan lengths by two pan directions. The
pan-techniques were derived from prior work on hand-to-face
input [31, 20]. They were: drag, a zero-order control method
where the on-screen cursor position changed directly with fin-
ger movement on the ear; joystick, a first-order control method
where finger displacement controlled the rate of cursor move-
ment and; toggle, a system that divided the ear into three equal
regions, each with a different function. Touching the top third
of the ear moved the cursor upwards at a fixed speed, the
bottom third moved it downwards and a location was selected
by a touch to the center. In drag and joystick, a location was
selected by releasing the touch. The position/speed mapping
for the joystick (twice displacement/second) and fixed speed
used in toggle (50% of ear length/second) were set via pilot
testing. This task used the six large targets from the tap task,
leading to a total of five possible distances between targets in
two possible directions. The interface is shown in Figure 3.b.
Participants in all conditions were required to touch their ear
and then adjust their finger position to move the cursor from
its initial location to the displayed target location.

Participants completed tap then pan tasks. Within each task,
the study used a fully balanced repeated measures design for
the technique variables and a partially balanced design for the
binary variables of size and direction. For each combination,
all target-position or pan-length trials were shown in a random
order to form a single block of trials. For both tasks, each block
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Figure 5. Error rates in EarTouch tap & pan tasks. Bars show Std Err.

was repeated four times, with the first presentation discarded
as practice. Failed trials were repeated. Measures were task
time (from presentation of the instructions until selection),
error rate and selected point. To minimize fatigue, participants
took a short rest break after each technique condition.

A total of 18 participants were recruited (14 males, mean age
24.7, one left-handed, all UNIST students) and compensated
with approximately $10 for the hour long study. Three reported
limited prior experience of VR/AR. The procedure for each
participant was identical: the study began with instructions
and preliminary form filling followed immediately by setup
of the equipment. They were then able to practice freely
for a maximum of five minutes before beginning the formal
study. In this way, we planned to retain 1944 correct tap trials
(18 participants by three tap-techniques by two sizes by six
positions by three repetitions) and, similarly, 1620 correct pan
trials for analysis. A technical error led to the loss of one
participant’s data in the tap task, leaving 1836 tap trials for
analysis.

Results and Discussion
Time and error data for tap and pan tasks are presented in
Figures 4 and 5. All analyses were three-way repeated measure
ANOVAs corrected for sphericity violations with Greenhouse-
Geisser corrections and followed by post-hoc pairwise t-tests
adjusted with Bonferroni confidence interval adjustments. For
brevity, we report only significant (α < 0.01) results - see Table
3 for interactions and main effects. Post-hoc comparisons are
discussed in the following sections.

In the tap task, there was a single weak interaction effect.
Accordingly, we opt to interpret the results in terms of the
moderate to high power main effects. All three tap-techniques
differed significantly in terms of the task time (all p<0.001).
Unsurprisingly, the ability to make position adjustments with

Table 3. Significant RM ANOVA results from the EarTouch study.
Task Measure Comparison Outcome

Tap

Time Tap-Technique F(2,32) = 80.6 p < 0.001 η2
p = 0.85

Size F(1,16) = 17.8 p = 0.001 η2
p = 0.53

Error Rate
Tap-Technique F(2,32) = 43.3 p < 0.001 η2

p = 0.73
Size F(1,16) = 173.5 p < 0.001 η2

p = 0.92
Tap-Tech. x Location. F(10,160) = 3.99 p < 0.001 η2

p = 0.2

Pan Time Pan-Technique F(2,34) = 12.54 p < 0.001 η2
p = 0.42

Length F(4,68) = 121.94 p < 0.001 η2
p = 0.88

Error Rate Length F(4,68) = 5.1 p = 0.001 η2
p = 0.23

dwell and liftOff required time and, with liftOff, the need to
trigger selection via an explicit finger-up event took yet longer.
The benefits of these increased task times are clearly observed
in the lower error rates for these conditions: both significantly
improve over landOn error rates (p<0.001). In addition, and
unsurprisingly, small targets also led to greatly increased error
rates, and modestly increased task times, when compared to
large targets. Data from the pan task were more uniform. The
joystick pan-technique led to faster task times than both drag
(p=0.002) and toggle (p=0.001) and task times, and to a lesser
extent error rates, predictably increased with distance.

These results provide a window into comparing our system
with prior work and deriving appropriate target sizes and tech-
niques for ear based touch interfaces. In terms of the time data,
figures for landOn data (1.48s) are relatively similar to those
recorded on FaceTouch’s [10] head mounted touch screen
(1.39s, reported for touches to the side of the head). On the
other hand, data from the LiftOff condition (2.5s) are notice-
ably slower than with FaceTouch (2.07s). This suggests that
while initial touches can be readily performed, it may be more
challenging to control a cursor via touches to the skin of the ear
than via a standard touchscreen. A candidate explanation for
this difference is that the skin is not as smooth, low-friction or
uniform as a touchscreen - moving along its surface precisely
is more difficult. In terms of errors, EarPut’s [20] is the most
directly comparable work. Its capacitive sensing wrap-around
ear sensors logged 42% failures with six targets positioned on
the edge of the ear, equivalent to the most error-prone landOn
condition in the current study. In contrast, errors on large
targets with the liftOff technique drop to a mean of 8.9%, a
substantial improvement over this prior work. This suggests
that optical tracking may offer considerable advantages over
capacitive sensing for ear augmentation.

To better shed light on this issue, we examined the precision
of both tap and pan inputs. For this analysis, we extracted the
distance between the points selected and the target center in all
trials (i.e., including errors) and processed it as follows. We
discarded outliers more than three SD from the absolute mean,
removing 93 (2.9%) trials from tap and 30 (1%) from pan. We
then recalculated mean and SD values and report precision
as mean plus/minus three times the SD (in normalized 0-100
units). This should account for 99.7% of the inputs intended
to reach a given target location. Results for tap were: dwell



Figure 6. Prototype of the ThumbTouch system. (a) Dimension of the
sensor array and labeling of target locations. (b) Wireless wearable de-
sign (c) Example use scenario.

(M:4.8, SD:4.8, precision:19.2); landOn (M:7.6, SD:6.0, pre-
cision:25.6) and; liftOff (M:4.3, SD:4.4, precision:17.5). This
suggests liftOff and dwell will perform optimally with five tar-
gets, while landOn is more suited to a four target system. Data
for pan are: drag (M:6.6, SD:9.9, precision:36.3); joystick
(M:5.7, SD:8.8, precision:32.1) and; toggle (M:7.5, SD:11.6,
precision:42.3). These values suggest that pan requires fewer
and larger targets than tap for optimal input - three targets in
the best performing joystick system. This suggests that pan in-
put tasks for ear based systems may have limited expressivity.
However, given the comparatively low error rates observed in
the pan tasks (see Table 5), further study of pan input would
be needed to confirm this recommendation.

Case Study 2 - ThumbTouch
The second case study explores input via a device mounted on
the hand, rather than on the face. Specifically, we developed
a capacitive sensing thumbnail, similar to Kao et al.’s NailO
[15], and applied it to the previously unexamined setting of
hand-to-face input – prior work has only considered finger
touches to a sensing nail. This design was motivated by out-
comes from the elicitation study. Specifically we envisaged
nail touches to the cheek and chin, the two most frequently
used face regions, and sought to embody three of the design
strategies: screening, as touches to the face by the thumb-
nail could remain hidden behind the fingers; re-purposing, as
such touches might support co-opting common actions such as
scratching the cheek or gripping the chin and; miniaturizing,
as input under such constraints is inevitably small in scale.

We developed a touch sensitive thumbnail by mounting a
0.3mm thick flexible PCB covered with a three-by-three grid
of 4.5mm square electrodes, spaced with 0.4mm gaps, directly
on the thumbnail. This device was intentionally designed to
be much thinner (0.3mm) than prior systems that integrate
all components into the nail (e.g., [15], 4mm). This is likely
important in our scenario as the nail is used to touch rather
than be touched by another finger. To minimize noise, the
electrodes were connected to an MPR121 capacitive sensing
micro-controller mounted just behind the nail on the thumb’s
distal phalanx. The MPR121 was connected to an Arduino

North

NE
(a) (b)

CBLB RB

RCCCLC

LT CT RT

Figure 7. Interface for ThumbTouch study. (a) 3 by 3 grid used in tap-
ping task showing target (red square) and cursor (blue dot). (b) Panning
task interface for NE direction. Dotted line indicates another example:
a North direction task.

Fio mounted on the wrist, which streamed data via a wire-
less xBee link to a host PC, which then processed this data
and transferred it, via OSC, to the same BT-200 HMD used
in the EarTouch study. All graphical interfaces were shown
on this HMD. Sensor latency and update rate were approxi-
mately 7ms and 60Hz. The nail was attached to participants
via double sided tape and the MPR121 chip secured with a
band-aid. A key goal for this hardware design was to mini-
mize the thickness of the nail sensor as preliminary testing
during development indicated that a thicker nail would impede
performance. The prototype is shown in Figure 6

We acquired touch position data from this sensor by following
Oakley et al.’s [25] use of the ratio of baseline to currently
measured capacitance on each MPR121 electrode to derive
a three by three grid of touch intensities. We then processed
this data using a three window median filter to remove noise,
performed a bicubic upscale by a factor of three to increase
resolution and extracted touch regions via Xiao et al.’s [42]
method of flood fill to identify individual touches and image
moments to calculate properties such as their centroid. As
we were interested in a single touch point on the face, we
always considered only the largest touch. As with EarTouch,
we ignored data from the first and last 100ms of each touch.

Performance Study
The study broadly followed the format of the EarTouch study,
adapted to the nail device format. We highlight key differ-
ences below. We again studied both tap and pan tasks. In
the tap study, we maintained the three tap-techniques of lan-
dOn, liftOff and dwell and used nine 4.5mm square targets,
arranged in a three-by-three grid that matched the sensor elec-
trodes. These locations are identified by two-letter acronyms
such as LC for Left-Center (see Figure 6.a). In addition, we
studied thumbnail touches to two face-sites: the chin and
cheek. This led to a 3 (tap-techniques) by 9 (target-locations)
by 2 (face-sites) design. In the pan study, we used just two
pan-techniques: drag and a combined joystick-toggle. We
combined these techniques to better fit the small nail input
device. The unified technique simply varied cursor speed pro-
portionally (at twice displacement/second) to the distance of
a touch from the nail’s center point. Additional, we studied
eight pan-directions (cardinal and semi-cardinal) and the chin
and cheek face-sites. We used a single pan-distance of 10mm,
always starting from one edge of the sensor/screen and moving
across its center to the opposite side. Graphical feedback in
these studies was updated to a 2D setting with targets and
cursors shown as squares or circles (see Figure 7).
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Figure 8. Task times in ThumbTouch tap/pan tasks. Bars show Std Err.
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Figure 9. Error rates in ThumbTouch tasks. Bars show Std Err.

Table 4. Significant RM ANOVA results from the ThumbTouch study.
Task Measure Comparison Outcome

Tap

Time

Tap-Technique F(2,34) = 26.8 p < 0.001 η2
p = 0.63

Location F(4.5,71.9) = 14.1 p < 0.001 η2
p = 0.47

Tap-Tech. x Reg. F(2,34) = 8.6 p = 0.001 η2
p = 0.35

Tap-Tech. x Loc. F(6.5,104.2) = 3.5 p = 0.003 η2
p = 0.18

Error Rate

Tap-Technique F(2,34) = 48.8 p < 0.001 η2
p = 0.74

Region F(1,17) = 28.1 p < 0.001 η2
p = 0.62

Location. F(4.6,77.8) = 27.7 p < 0.001 η2
p = 0.62

Tap-Tech x Loc. F(7.8,133.2) = 3.3 p = 0.002 η2
p = 0.16

Region x Loc. F(8,136) = 5.2 p < 0.001 η2
p = 0.23

Pan Time Pan-Tech. x Dir. F(7,98) = 5.4 p < 0.001 η2
p = 0.28

Error Rate Pan-Tech. x Dir. F(7,119) = 3.35 p = 0.003 η2
p = 0.16

Procedures followed the EarTouch study: participants were
provided with instructions, donned the equipment and prac-
ticed freely for up to five minutes. They then completed tap
followed by pan tasks in a repeated measures study design.
In both tasks, tap/pan–technique and face–region were fully
balanced, while target-location/–direction were randomized.
A block was one set of directions or locations and participants
completed three blocks per condition, with the first block con-
sidered practice and not retained for analysis. Pilot tests indi-
cated that some input tasks were extremely challenging, so we
opted not to require participants redo trials in which they made
an error. In total 18 participants (10 males, mean age 24, all
right-handed) completed this study. All were UNIST students,
or recent graduates, and compensated with approximately $10
for the one hour experiment. 11 had limited prior experience
of VR/AR. In total, we captured 1944 taps (18 participants
by 3 tap-techniques by 2 face-sites by 9 target-locations by 2
blocks) and 1152 pans (18 participants by 2 pan-techniques
by 2 face-sites by 8 pan-directions by 2 blocks).

Results and Discussion
We analyzed results using similar methods to the EarTouch
study: repeated measures ANOVA following by post-hoc test-
ing, with sphericity and confidence interval adjustments ap-
plied where appropriate. We report only significant results
(α < 0.01). Time and error data are depicted in Figures 8
and 9 and ANOVA results are shown in Table 4. Time data
includes measurements from both successful and error trials
as we observed few differences between the aggregate perfor-
mance of these sets (overall means and SDs were 38-114ms
apart) and, given failed trials were not repeated, the entire set
was considerably more complete. Data from timeouts are not
shown (38 or 1.95% of tap trials and 31 or 2.7% of pan).

Performance in the tap task varied considerably in both time
and accuracy. As in the EarTouch study, landOn was both
faster and more error prone than both liftOff and Dwell (all
p<0.001): without interactive feedback, the tap task can be
executed quickly, but not accurately. Touches to the cheek
also led to significantly more errors, but not longer times, than
touches to the chin. We speculate this is due to differences in
compliance between the relatively rigid chin and soft cheek
- it was more difficult to make accurate taps on a soft skin
surface. Due to the large number of comparisons it involves,
we opted not to conduct pairwise tests on the location variable;
instead we depict this data in the confusion matrix in Figure
10. The error interaction effects (not plotted) are due to the
accurate performance of the TL and TR locations (the left
and right tips of the nail) remaining unaffected by the main
effects of technique and region: these were readily accessible
locations. The interaction of technique by region in the time
data suggests dwell is faster on the chin that the cheek, while
the relatively weak technique by location effect had no clear
interpretation. Performance in the more challenging pan task
was more uniform and the two weak interaction effects suggest
that the joystick technique performed better than the drag
technique for upward directions (NW, north and NE). This
again reflects the increased accessibility of these regions - it is
easier to touch the top of the nail.

The tap confusion matrix sheds more light on this issue. While
the strong performance of the TL and TR tip locations is inar-
guable, we also note that nail edges may be reliably detectable
using a more advanced algorithm - touches to the LC, TC and
RC are correctly associated with the left, top and right of the
nail in a mean of 96.9% of cases. This indicates participants
were able to select the correct side of the nail, but had diffi-
culty selecting specific locations on that side. This is likely
due the whole edge of the nail making contact with the face.
We speculate that side touches could be accurately performed
and easily disambiguated from tip touches by examining the
size of the contact area. Similarly, we note that the CC and
CB touches are the only two locations with errors distributed
over all other locations. This suggests that the input action
was akin to simply pressing the whole nail against the face,
an action that could also likely be distinguished from edge
contacts by examining touch region sizes [25]. Adding this
functionality and capturing data on these inputs is a clear next
step for this work.
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Figure 10. Confusion matrix for ThumbTouch tap task.

We also calculated precision data. After discarding outliers
(tap: 64 or 2.1%, pan: 72 or 4%), the values (in mm) were:
dwell (M:1.94, SD:1.26, precision:5.72); landOn (M:3.15,
SD:1.62, precision:8.01); liftOff (M:2.45, SD:1.53, preci-
sion:7.04); drag (M:2.16, SD:1.62, precision:7.02) and; joy-
stick (M:2.88, SD:2.95, precision:11.73). These relatively
large figures, relative to sensor size, confirm the difficulty of
tasks studied and the need to consider alternative approaches.

VALIDATION STUDY
While the lab studies of the Ear– and ThumbTouch extend prior
work and contribute practical assessments of performance in
hand-to-face input tasks, they do not address our core goal of
improving our understanding of socially acceptable hand-to-
face input. Accordingly, we conducted a final study to assess
the input techniques, and the design guidance they instanti-
ate, from the perspectives of social acceptability and subtle
or non-obvious/unobtrusive input. In this study participants
operated or observed the HMD and Ear/Thumb prototypes
in representative input tasks in the same coffee shop used in
the original elicitation study. In total, 12 new participants (4
males, mean age 23.7, all right-handed, all UNIST students)
were compensated with $10 to complete the study. As in the
elicitation study, they worked in six pairs (all strangers).

One participant in each pair took the role of the user, wearing
and operating the devices, while the other acted as an observer,
watching these activities, but not briefed in advance that input
actions were taking place. The study presented three input
tasks on both devices. On EarTouch, participants experienced
the liftOff (tap), drag and joystick (both pan) tasks, while on
ThumbTouch they experienced dwell (tap), drag and joystick
(both pan). These techniques were selected to ensure a diverse
set of techniques and/or due to their comparatively strong per-
formance in the lab studies. The order the prototypes were
experienced was balanced between participant pairs, while
the order of three techniques on each prototype was varied
using a Latin square design. For each task/device pair, the
user participants performed the training tasks from the orig-
inal studies, experiencing the input and feedback (but not
performing any sustained, repetitive input tasks) while the
observer watched. Between each task, both participants filled

out the social acceptability/obviousness questionnaires from
the elicitation study. At the end of the study, we conducted a
semi-structured interview with the pair of participants captur-
ing opinions and reactions to the input techniques. Participants
were asked to reflect on and contrast the techniques in terms
of general opinions and how comfortable and unobtrusive (or
uncomfortable and obvious) they felt they were. Finally, we
note that due to problems with the lighting conditions in the
coffee shop, the EarTouch system performed poorly for three
participants. These participants received an explanation of
the system and were able to partially experience it, but the
reliability of the input was low. This may have influenced
performed actions, opinions and ratings.

Experiment Results
The data from the questionnaires are summarized, in the form
of the compound acceptability scores we used in the elicitation
study, in Table 5. The data show that users tended to rate tap
tasks (liftOff/Dwell) as socially acceptable and unobtrusive in
more locations and situations than pan tasks (drag/joystick).
No such clear cut effect was observed in the the data from
the observers. Furthermore, they tended to score lower than
the users. The likely reflects the fact that the observers were
naïve. The input actions, without being situated in the context
of controlling an interactive system, may have appeared less
acceptable than to the fully-aware users operating them. To
shed further light on these issues, we turned to the diverse set
of comments and opinions captured in the interviews, which
we processed by transcribing them and then organizing them
via an iterative affinity process. In this description, quotes are
marked with U for device Users and an O for Observers.

We first focused on comments with respect to the five de-
sign strategies from the elicitation study. All participants
commented on the value of the camouflaging strategy. Eight
participants viewed the ear as a suitable site for masking input
actions as it was commonly touched. It was "OK because it is
similar to touching an earring" (U1), or things "people already
wear in their ear like Bluetooth earphones" (O4). Two partici-
pants (U6, O1) also referenced sweeping back their hair over
their ears. O4 suggested that "even if there was a stranger pass-
ing by they would never know" the touches were controlling a
device and O2 remarked that, if s/he had not been participating
in a study, s/he "would not have thought of assessing or paying
attention to [the ear touches] at all". Five participants felt
touches to the chin were also "natural" (U1) or "habitual" (O4)
and touching it resembles common behavior such as "thinking
or when they scratch it" (O2, O6) or that it was simply a region
where people usually touch their faces (O5). Participants also
offered contrasting opinions: the ear "stands out too much"
compared to the chin (O2) or that people "do not normally
touch their chins" (O3) – it is an "[un]common form" of touch
(U3). Ultimately, the diversity in this assessment reflects what

Table 5. Mean acceptability scores (0-1) in the validation study.
Role Prototype Overall LiftOff/Dwell Drag Joystick

User EarTouch 0.74 0.85 0.67 0.70
NailTouch 0.70 0.81 0.70 0.60

Observer EarTouch 0.58 0.57 0.65 0.51
NailTouch 0.69 0.68 0.75 0.64



O3 referred to as the "gestures that we normally do as habit" –
to be successful, camouflage needs to adapt an existing user
behavior, a "daily gesture like touching or putting" (U1). It
thus varies from user to user.

The miniaturizing strategy was highlighted as valuable by nine
participants. Two felt the control actions were not "big, [so]
they were mostly OK" (O1) or were simply "too small to
notice" (U4), while one emphasized the importance of touches
to a "small region" (O3). Others appreciated ThumbTouch
as its "small movements won’t be weird" (U2) or favored
it over EarTouch as "the gesture for the ear was too big up
and down" (O5) and you have to raise "your arm higher to
reach the ear" (O6). The value of miniaturizing also came
across in an assessment of the input techniques – the larger or
prolonged movements in the pan tasks were "weird" and would
"gather the attention" (U1) and actions that involved larger
physical movements such as "taking the finger off the ear" in
liftOff (O2) stood out. Although EarTouch involved larger
movements, it benefited from the obfuscating strategy of using
the head to obscure input. O1 remarked on the "difference
between front and side" and touches to the ear being less
"intrusive" that those on the chin, while O4 acknowledged
that "the active range was much bigger for ear gestures, but
since the ear is on the side, it didn’t matter". Participants also
suggested this strategy for new designs: under the chin, on
the neck or behind the ear would "hide the gesture well" (O6).
The screening strategy was mentioned by a single participant
who noted that in ThumbTouch they "could hide my thumb so
I can make others not notice this" (U1), while the re-purposing
strategy did not emerge in the interviews, possibly due to its
relatively weak embodiment in the two prototypes.

Beyond these comments on the strategies, participants brought
up a range of other issues. U6 was concerned about hand-to-
face touches and makeup, an issue that has cropped up in prior
work [31], while U5 appreciated that neither input technique
required a hand-held controller and also the proprioceptive
aspects of the tasks: it was convenient that s/he "could know
where the hand is touching now". In general, participants, and
particularly four from the six observers, were positive about
performing the input actions in the coffee shop setting. O3
remarked that s/he "didn’t think people would care about the
gestures in a cafe", O4 that they "certainly didn’t bother me"
and O6 that the input actions "are fine to do" as a cafe as it is
"a place where people move around and talk". In addition, O6
felt they would be suitable "on the street or on the bus", while
O5 was more cautious: in a cafe, "it was ok", but somewhere
"quiet and static it would have stuck out".

The results from this study generally validate the design strate-
gies identified in the elicitation study and instantiated in the
prototypes. In particular, the interview data reveal that both
users and observers, who respectively conducted and naïvely
viewed input tasks on the prototypes, frequently highlighted
aspects of the strategies as important qualities or mechanisms
to achieve socially acceptable and non-obvious or unobtrusive
hand-to-face input. For both prototypes, strategies such as cam-
ouflaging and miniaturizing were viewed as critical, whereas
both obfuscating and screening were viewed as effective as-

pects of the techniques by smaller numbers of participants. A
key topic for future work on this topic would be to tackle is-
sues of how unobtrusiveness could be sustained for prolonged
or frequent use. One way to achieve this might be to provide
multiple input mechanisms [2], so that users would be able to
vary how they performed input depending on the situation they
were in, rather than engage in sequences of repetitive motions.

CONCLUSIONS
This paper describes a multi-stage research process that identi-
fies and validates design strategies for making subtle, unobtru-
sive and socially acceptable hand-to-face input. Specifically,
from an elicitation study focused on social acceptability we
derive, and contribute, five strategies for the design of socially
acceptable hand-to-face input techniques. We instantiate these
strategies in two novel prototype input systems and contribute
empirical characterizations of their use, extending knowledge
about human performance in hand-to-face interaction. Finally,
we validate the design strategies in a study that has user and
observer participants experience the prototypes in a public
setting. We reflect on the importance of the different strategies
in achieving socially acceptable hand-to-face input.

Limitations of this work include a reliance on participants
from a single culture and age range; more diverse participants
would improve its validity. The current study could also have
been subject to experimenter effects [40] and follow up work
should seek to isolate their impact by, for example, objectively
logging bystander reactions in response to hand-to-face input.
Additionally, we note the current prototypes do not represent
a comprehensive exploration of the design space outlined by
the design strategies; additional cases should be developed to
better showcase the value of the strategies. The immaturity of
the prototypes (e.g., exposed wires, visible cameras) may also
have impacted the results, although we expect this would only
have lowered perceptions of social acceptability and that more
mature devices would only boost these ratings. Indeed, the
prototypes could be improved in many ways. Next steps for
EarTouch involve integrating machine learning algorithms to
detect a greater number of hand actions, such as bends, pushes
or deformations of the ear. For ThumbTouch, a clear follow-up
is to create a system focused on capturing performance using
edges of the nail rather than 2D positions and on enhancing
performance in directional input tasks. One possibility here
would be to focus on open-loop tasks such as swipe. Finally,
longer term field studies of hand-to-face input will be required
to move beyond some of the reservations advanced by our par-
ticipants: the techniques described in this paper were deemed
appropriate for short term use in public settings such as coffee
shops, but over more prolonged periods, the input techniques
they feature, and strategies they represent, may not hold up
to scrutiny. Future work should look into deploying hand-to-
face input systems to participants for sustained use to better
understand these long-term, real-world, effects.
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