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Abstract. Smartwatches support a wide range of functionality, includ-
ing mediating access to sensitive data and services. However, securing
access to them is difficult due to their small size—it is difficult, for
example, to enter alphanumeric passwords accurately due to the lim-
ited space available to present a keyboard. Consequently, 4-digit PIN
is commonly used to secure smartwatches, a technique widely acknowl-
edged to be highly vulnerable to simple guessing attacks. To address
these usability and security issues, we propose PushID, a new behavioral
biometric technique for a smartwatch that combines four on-screen tar-
gets with five pressure levels to enable input of any one of 20 unique
symbols from a single screen touch. In addition to this relatively large
input space, PushID captures behavioral features during pressure input
(e.g., finger touch profile, wrist motions) and uses this as a behavioral
biometric. We report on a preliminary study of PushID and its security
against random guessing attack: it achieves good usability for a single
input (approximately 2s) and high resistance to guessing (false-positive
rates of 1.05%). We argue that pressure-based input can improve the
security and maintain the usability of smartwatch lock systems.
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1 Introduction

The Smartwatch market is steadily growing and is anticipated to achieve sales
of 230.30 million units by 2026 [17]. The majority of smartwatches are cur-
rently paired with a smartphone to support all functionality. However, as devices
become more advanced standalone functionality is starting to be introduced to
support users during tasks such as exercise, situations in which users may prefer
not to be encumbered by a smartphone. Building on this trend, in the future
commercial smartwatches could provide a wide range of services in standalone
settings such as collecting health data, storing personal messages, and processing
payments. Due to the sensitive nature of these applications, we argue there is a
need to secure access to standalone smartwatches.

However, the small size of these devices makes traditional knowledge-based
authentication schemes, such as alphanumeric passwords, slow and awkward
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to enter. Simpler schemes such as Personal Identification Number (PIN) are
more feasible but are widely acknowledged to be vulnerable to random guessing
attacks [14]. Physiological biometrics-based authentication could be an alterna-
tive solution that can improve usability and security over such knowledge-based
schemes—such systems have proven popular on smartphones. However, the sen-
sors for established physiological biometrics, such as fingerprints, are hard to
integrate into the small case of a smartwatch. As an alternative, researchers
have proposed behavioral biometrics based on data from built-in smartwatch
sensors such as the touch screen [14] or inertial motion unit [3] with promis-
ing results. Pressure-based input is another form of touch input that may lead
to rich variations in behavioral characteristics. In addition, it can help support
authentication by increasing the scope of different inputs that are available on
small input areas—multiple pressure levels can be entered on each on-screen
button. Reflecting these benefits, pressure has been proposed as a behavioral
biometric feature during tap-based smartwatch authentication [14]. Addition-
ally, explicitly controlling touch force has been used to enable pressure-based
explicit authentication schemes on a smartphone [10,16].

In this paper, we extend these approaches by proposing PushID, a smart-
watch authentication system based on a novel pressure-based behavioral bio-
metric. This paper presents the design of the scheme and results of a user study
exploring its usability and security against random guessing attacks. PushID is
based on features extracted from screen touches and wrist motion data in which
users intentionally modulate the force they exert. Specifically, we extracted a
total of 165 features from raw touch and wrist motion data while the partici-
pants generated, sustained, and released one of five discrete pressure levels on a
wrist-mounted touch screen. We performed a simple empirical study (N = 30)
to collect user behavior while operating PushID. The participants entered 20
randomly assigned PushID entries according to instructions provided during the
study. We used this data to train recognizers for each participant and compared
user verification performance in a simulated random guessing attack scenario
in terms of False-Positive Rate (FPR), False-Negative Rate (FNR), and Equal
Error Rate (EER). We also measured the completion time to input a single
PushID entry to evaluate the usability of PushID.

The results indicate that the best verification performance of the PushID rec-
ognizer was as follows: mean FPR was 1.05%, mean FNR was 42.76%, and mean
EER was 8.34%. In the case of FPR, PushID shows improved values compared to
other behavioral biometric authentication schemes for smartwatches, such as the
21.65% reported for AirSign [3], and the 7.2% in Beat-PIN [8]. However FNRs,
and correspondingly, EERs are higher compared to these closely related schemes
[3,7,8,14]. In terms of usability, participants took a mean of 2.09 s for each input,
a good level of performance compared to both popular authentication schemes
such as PIN (2.195 s) [14] or other behavioral biometrics-based authentication
proposed for smartwatches [7,8,14].

Based on these results we argue that authentication via pressure-based behav-
ioral biometrics (based on data captured when users are asked to input specific
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pressure levels) is a promising approach to smartwatch security that can enhance
resistance to random guessing attacks while maintaining good authentication
time.

2 Related Work

User authentication systems can be divided into two different modes [20]: identi-
fication and verification. In the case of identification, there is an assumption that
multiple users share a device so the authentication task is to clarify the identity
of the current user among the stored set of genuine users. On the other hand
in verification, there is a single genuine user (a device or account owner) and
the task is to verify whether or not the submitted data represents that captured
from the genuine user or any other individual (e.g., another user or an imposter).
In this paper, we consider only verification scenarios.

2.1 Behavioral Biometrics in Smartwatches

Biometric authentication, which identifies or verifies a user according to their
sensed characteristics (either physiological or behavioral) is an important and
popular authentication method that can achieve both strong security and good
usability in platforms as diverse as smartphones and door locks. This method is
known as a viable solution to memorability issues and has high resistance against
guessing attacks compared to knowledge-based authentication, which authenti-
cates an individual based on information that they know (e.g., a password or
PIN). There are two different authentication methods—first, physiological bio-
metrics, which is based upon the unique body features of an individual (i.e., fin-
gerprint) and, second, behavioral biometrics, which authenticate an individual
based on their unique activity patterns (e.g., typing patterns) [19]. Though phys-
iological biometrics are well established in many devices, such as the fingerprint
or face recognition systems that appear on smartphones, they are hard to imple-
ment on smartwatches [14] because they typically require specialized sensors
(e.g., fingerprint readers, high-resolution cameras) they are difficult to integrate
into small watch form factors. On the other hand, behavioral biometrics may
be a more appropriate approach, as many smartwatches are already designed to
accurately track the detailed activities of their user to support applications such
as exercise or physiological monitoring.

We summarize previously reported verification performance for behavioral
biometrics on smartwatches in Table 1. We express performance data in terms
of False Positive Rate (FPR, the ratio of the number of accepted attempts by
non-legitimate users to the total number of attempts by non-legitimate users),
False Negative Rate (FNR, the ratio of the number of rejected attempts by
legitimate users to the total number of attempts by legitimate users), and Equal
Error rate (EER, the trade-off point where a recognizer is tuned to match FNR
and FPR as equal). Various user behaviors, which can be captured by popular
smartwatch sensors such as motion sensors or the touchscreen, have been studied
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Table 1. Verification performance in random guessing attack for existing smartwatch
authentication systems using behavioral biometrics. FPR (false positive rate), FNR
(false negative rate), and EER (equal error rate) expressed in %.

Work FPR | FNR | EER
Li and Xie [12] |0 22 NA
AirSign [3] 21.65 | 19.48 NA

VeriNet [13] 10.24|20.77 | 7.17
TapMeln [14] ]0.98 |53 |1.3

for biometrics. Specific modalities include arm gestures [12], mid-air gestures [3],
wrist motion data during PIN input [13], and screen tapping rhythm [14]. Their
performance is complex and reporting of metrics is not completely consistent.
Nonetheless, it is obvious that attaining high performance, in terms of low EERs
(or the combination of low FPRs and FNRs) is demanding: a majority of this
work achieves scores of 20% or higher on at least one of these metrics. However,
bucking this trend, TapMeln [14] achieved 0.98% EER in response to random
guessing attacks. To do this, TapMeln extracted different touch features from a
customized explicit authentication code—a passcode in the form of a rhythmical
tapping pattern. This highlights the possible advantages of extracting behavioral
features from novel touch actions beyond standard taps. We argue that the more
expressive performance inherent in this type of input may help to increase the
uniqueness of the behavioral biometrics that can be derived from a user‘s input.
Based on these arguments, we propose PushID to explore the value of the
behavioral features extracted from both the touch screen (including touch force
data) and 3-dimensional motion sensors (accelerometer and gyroscope to track
wrist motion) while users explicitly perform a complex and dynamic input action;
controlling specific forces during an entry of a single pressure-based input.

2.2 Pressure Input-Based Authentication

There have long been studies claiming that pressure input is expressive and pre-
cisely controllable [2]. Highly accurate pressure sensors are currently integrated
into many commercial laptops and smartphones, while binary pressure sensors
appear on smartwatches. We argue that pressure input is particularly useful
in small form factor devices, which frequently suffer from fat-finger problems,
because it can provide additional input options even when screen real estate is
highly limited [16].

The potential of pressure-based input has been studied in various studies and
showed diverse results. For instance, ForcePIN [10] is a PIN system that features
two pressure levels, doubling the number of possible input symbols available.
ForcePIN achieved a reasonable authentication time of 3.66 s to complete input
of 4-digit passcodes. Pressure has also been studied in the area of touch-based
behavioral biometrics. One noteworthy focus for this work is to improve the
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security of standard lock inputs. For example, De Luca et al. [4] collected touch-
related features including location, size, speed, duration, and pressure during
pattern lock input on a smartphone, and achieved 77% accuracy while perform-
ing authentication tasks. Salem and Obaidat [18] report the peak verification
performance in this area—0.9% EER—in a study using 10-keystroke dynamics-
related features, including pressure during the task of entering eight alphanu-
meric passwords. We assert these prior results indicate that pressure input tasks
can generate data that is appropriate for verifying an individual using a behav-
ioral biometric approach. The system we present in this paper borrows methods
from much of the work reviewed in this section; it leverages the idea that pressure
input can increase the expressivity of touch input on small screen wearables to
create a behavioral biometric authentication system that provides a large num-
ber of attainable passcodes on a small input surface. The goal of this work is
to retain authentication usability while improving resistance to random guess-
ing attacks. We do this by investigating the efficiency (time to enter) and FPR,
FNR, and EER of our proposed PushID system that is based on extracted touch
and wrist motion behavioral features that occur during pressure input.

3 PushID System Design

3.1 Threat Model

PushID was designed to enhance resistance to random guessing attacks, a simple
and common attack strategy. In this study, we set the attack scenario as that of
an attacker who has gained a victim’s device via methods such as theft and tries
to unlock it without any preliminary knowledge related to the user or passcode
[12]. We assume the attacker was not able to previously observe genuine unlock
attempts.

3.2 PushID Interface

Existing commercial smartwatches, such as the Apple Watch First Generation
and above, provide pressure input on their touch screen. However, they only
support binary levels of touch force so app developers can not use multi-level
pressure input at this time. Since this study required a platform that could
measure detailed pressure, we used an iPhone X smartphone (i0S 12.1.4) that
supports analog pressure measurements in place of a smartwatch—this device
has also been widely used for research about touch force-based interaction [6,10].
In order to use the smartphone as a watch, we placed the phone on an armband
and made a prototype to receive touch input from only a 24 by 30 mm area in the
center of the screen. Emulating a watch with a smartphone in this fashion has
been previously adopted for investigating the user experience of next-generation
smartwatch interfaces [5]. Although the smartphone (174g) and a smartwatch
(e.g., Apple Watch 6’s 30.5 g) are substantially different in weight, we believe
these changes likely had a limited impact on the user behavior data we collected
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Fig. 1. GUI of PushID (left) showing touch force gauge (1) and buttons (2). Highlight
items are in yellow. Example screen during input (right) showing red pressure cursor
over first pressure level.

in this study. According to a study about physical loading on the wrist [9],
significantly increased stress and fatigue appeared when participants wore a
wrist-mounted wearable computer weighing more than 0.54 kg, and lifted their
arm for more than 10s. In the case of our study, the apparatus was about one-
third of this weight limit and, generally, the authentication completion time was
considerably shorter than 10s. Accordingly, we do not believe the use of a phone
in place of a watch invalidates the work we report. For the rest of this paper, we
refer to our wrist-mounted prototype as a “watch”.

Single PushID entries were achieved by pressing an on-screen button with a
specific level of touch force. Figure 1 shows the current graphical user interface
(GUI)—four large (12 by 12mm) square buttons are provided and one of five
pressure levels can be entered per button, so a total of twenty different input
behaviors are available. We chose four targets because we want to provide users
with large and easy-to-select targets and this design is used for prior research on
smartwatch authentication with similar goals [15]. We picked five pressure levels
based on prior work [6]—participants in this study indicated that the use of five
discrete pressure levels led to high precision and accuracy.

We used the full touch pressure range that could be measured on the watch,
but not all five pressure levels were equally divided; the interval of each pressure
level was adjusted to improve selection performance following prior designs of
five pressure level input systems [6]. Specifically, we reduced the intervals of
highest and lowest pressure levels, as these levels have been reported to be easy
to select [1]. There was no official way to convert the pressure values measured
by iPhoneX to International System Units. Therefore, we first calculated the five
pressure levels based on the values measured by the iPhone, and after obtaining
a conversion formula through a calibration procedure using an electronic scale
and a set of weights. This enabled converting the iPhone’s sensor data into gram-
force units. After this process the pressure levels were defined as (in gram-force):
0 to 54.85; 54.85 to 167.50; 167.50 to 280.16; 280.16 to 333.17 and; 333.17 to
392.81.

The graphic interface of PushID prompted users to select a yellow highlighted
target button and pressure level. It showed the pressure levels as segments on a
horizontal gauge (Fig.1). When a user touched the screen, the touched button
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was displayed in green, and the current touch force was displayed as a red line
that moved across along the gauge (and its segments) in real-time. The five
different pressure levels were marked on the gauge. A pressure level was selected
when the currently exerted pressure remained in the same pressure level for
300 milliseconds, a technique borrowed from prior work [6]. Progress during this
pressure-dwell was marked by feedback in the form of the currently selected level
filling up with a blue highlight; after 300ms it was full. If the correct pressure
level was selected this highlight turned green, whereas it turned purple if the
wrong pressure level was selected. The use of this pressure dwell enabled accurate
selection of pressure levels during finger release as this process was rapid (less
than 50 ms) and did not result in a selection of any new pressure levels. As this
system has the potential to be combined with a knowledge-based authentication
scheme in the future, the interface also contained graphic feedback for entering
four entries as a set; the entry history was displayed using four circles, and it
also supported the ability to modify entered entries with a delete button. These
functions were not used in the current study.

3.3 System Overview

Like other behavioral biometric authentication technologies, PushID requires
two separate processes: Enrollment and Verification. A summary of the overall
system is shown in Fig. 2 and these two stages are briefly described below.

— Enrollment: If a genuine user successfully entered the target pressure level
within the target button shown on the screen, a feature vector was calculated
based on the behavioral data collected from the beginning of the touch to
finger release of the screen. Then the system also generated feature vectors
of attackers, that should be distinguished from the genuine user based on a
random guessing attack scenario. Finally, the system finished pre-processing
the genuine user data and attacker data and then trained a per-user recognizer
for verification using machine learning techniques.

— Verification: If the genuine user or attacker succeeded in entering the target
pressure level within the target button according to the instructions shown on
the screen, a feature vector was calculated. Then the user-specific recognizer
generated during Enrollment was used to judge whether the data represented
the genuine user or an imposter.

During enrollment, the PushID system recorded touch screen data (X and Y
coordinates of touchpoint, touch radius, and touch force) 100 Hz, and captured
wrist-motion data from the watch inertial measurement unit (IMU) 250 Hz while
genuine users entered a PushID item. Specifically, we logged acceleration and
rotational velocity (gyroscope data) in X, Y, and Z axes.

In the feature extraction stage, a feature vector consisting of summary statis-
tics of 12 variables derived from four distinct behavioral traits captured during
input of a single PushID entry was created. These are touch (force, x-position, y-
position, radius), acceleration (X, Y, and Z axes, and magnitude), and rotational
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Fig. 2. Overview of PushID system implemented for this study

velocity (X, Y, and Z axes, and magnitude). The calculated summary statistics
were: minimum, maximum, range, mean, and standard deviation. Additionally,
frequency domain analysis was done via zero-padded Fast Fourier Transforms
(FFT). We used the top four amplitudes and the top frequencies at which they
occur as features. The highest amplitude frequency was always zero, so it was
dropped as a feature. Moreover, we included skewness and kurtosis for all vari-
ables except positions of touch and radius since these variables exhibited very
narrow deviations. Lastly, we included three features related to input time—
touch duration in milliseconds and the number of samples of collected touch and
wrist motion data. Each calculated feature value was also converted to a z-score
according to the combination of button and pressure level selected; the mean
and standard deviation of each feature per combination of button and pressure
level were calculated from the full set of user data. In the end, a total of 165
features were created to form the feature vector from each input trial.

To train and test binary authentication classifiers to support user verifica-
tion, it is also necessary to prepare the feature vectors of attackers. We applied
two different methods for this. Firstly, we used the traditional method of extract-
ing feature vectors from randomly sampled pre-collected data from other users.
We created attacker feature vectors in the same way as in the case of genuine
user data. Secondly, we synthesized feature vectors based on the distributions of
individual feature values in the pre-collected user data set. This approach has
been applied in prior work [14] and offers the advantage that it does not require
storing any genuine data from other users. We generated 720 feature vectors
using both of these methods and based on a set of 28 users data collected in an
empirical study.

After preparing feature vectors for both a genuine user and attackers, the
following pre-processing steps were applied:

1. Split data into train data and test data. We divided the feature vectors of
the genuine user and the attackers into data for training a recognizer and
data for evaluating verification performance. In the case of genuine user data,
we use initial data for training to reflect a realistic unlock scenario during
enrollment. We varied the set size of training data (nTrain) between 3 to 14
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genuine user entries and sought to identify the optimal nTrain size, in terms
of the verification performance of recognizers, via a grid-search procedure.

2. Re-sampling. We used the random re-sampling technique to match the
amount of genuine user samples and attacker samples in the training data
to reduce the influence of imbalanced classes on verification performance.
The target re-sampling number of each class (nResampling) was varied from
20 to 720 in hops of 50 according to a grid-search procedure.

3. Feature standardization. The values of each feature were converted to a Z-
score according to the statistical distributions in the training data.

4. Feature dimensionality reduction. As a large number of features can overesti-
mate classification performance during training, we incorporated dimension-
ality reduction methods [20]. For this study, we used principal component
analysis (PCA) and adjusted the retention percentage of variance explained
by all of the selected components (PCATh) from 0.98 to 0.6 via grid-search.

After completing data pre-processing, two different types of classifiers were
generated: one-class classifiers and binary classifiers. For both, we used a support
vector machine (SVM) with a Radial Basis Function kernel, as this approach has
been frequently used in behavioral biometrics research [20]. We applied a 10 fold
cross-validation grid-search for tuning classifier hyperparameters [11].

The verification process determined whether a new PushID input was entered
by a genuine user. Firstly the system checked whether the user correctly entered
input according to guidance on screen. If this was correct. the feature vector
was calculated for the input in the same way as during the enrollment process.
Finally, this feature vector was submitted to the appropriate user classifier.

4 Data Collection Study

We performed an empirical study to explore the usability and security of PushID.
We collected 551 valid PushID entries, and evaluated the verification perfor-
mance of PushID in a simulated random guessing attack scenario. This study
was approved by the local institutional review board (IRB).

4.1 Participants

A total of 30 participants (mean age = 23.07, o = 2.66) were recruited through
a post on a social media site for members of a local university. Among the par-
ticipants, 18 were male and 12 were female. Left-handed people were excluded to
increase the homogeneity of collected data. We recorded familiarity with smart-
phones, smartwatches, and pressure interaction on these devices via a question-
naire with 5-point Likert scales. Results indicated a high familiarity with smart-
phones (p = 4.47, ¢ = 1.31), a low familiarity with smartwatches (u = 1.33, o
= 0.76), moderate experience with pressure interaction with smartphones (u =
2.27, 0 = 1.51) and low experience with pressure on smartwatches (u = 1.27, o
= 0.69). 5 USD in local currency was given as compensation for study participa-
tion. One participant showed low compliance with study instructions (in terms
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of accurate button and pressure level selection), so their data was excluded from
all analyses. We report on data from the remaining 29 participants in this paper.

4.2 Procedure

The study was conducted in a silent laboratory environment while the partic-
ipants sat in a chair without armrests. Each participant completed the below
steps:

Instructions: The study started with a participant reading the study guide and
then filling out the consent form. The participant could ask questions about
the study at any time. The participant read paper guidelines about how to
enter PushID items. The participant was guided to perform all input tasks as
quickly and accurately as possible. Also, the participant had to keep their arm
suspended in space while performing each input trial. There was no restriction on
posture between trials; this minimized fatigue. In addition, we further reduced
accumulated fatigue by mandating a break of at least 5s after every 8 trials.

Input task: After receiving all the experimental instructions, participants put
on the watch to perform the study input tasks. They achieved this by correctly
selecting the yellow target button and the target pressure level displayed on the
screen. The combination of target buttons and pressure levels were randomized
for each trial, and each participant completed 19 trials.

4.3 Measures

To evaluate the usability of the PushID input task, Input time, the period
between screen contact and release during each correct PushID entry was
recorded. Based on collected behavioral data of the participants, verification
FPR, FNR, and EER were explored for a wide set of classifier parameters using
the grid-search procedures discussed in Sect. 3.3. This revealed how to generate
a recognizer with the best possible EER.

5 Results and Discussion

In terms of usability measurements, the participants took a mean of 2.09s (o =
1.68) for each input. This represents an on par level of performance compared
to both popular authentication schemes such as PIN (2.195s) [14] and other
behavioral biometrics-based authentication proposed for smartwatches [7,8,14].
In terms of resistance to random guessing attack, the best PushID recognizer
used an nTrain of 14, nResampling of 520, and a PCATh of 0.98 with the binary
classifier built using synthesized imposters—mean FPR was 1.05% (o = 0.76),
mean FNR was 42.76% (o = 22.50), and mean EER was 8.34% (o = 8.06). In the
case of the real user imposter set, peak performance was achieved with nTrain of
14, nResampling of 720, and a PCATh of 0.98 with the binary classifier —mean
FPR was 2.04% (0 = 1.98), mean FNR was 42.07% (o = 23.51), and mean EER
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was 11.67% (o = 7.54). Interpreting these results, we note that in the case of
FPR, PushID shows improved values compared to other behavioral biometric
authentication schemes for smartwatches, such as the 21.65% reported for Air-
Sign [3], and the 7.2% in Beat-PIN [8]. However FNRs, and correspondingly,
EERs are higher compared to these closely related schemes [3,8,14,21]. This
result also showed a discussion point about the method to prepare imposter data
to train and test the security of recognizers against random guessing attacks—
the lower FPR when using synthesized imposter than real human data may mean
that either the former method was effective at training the recognizer, or it led
to weaker attacks than the latter one. Further work with collecting more user
data is needed to systemically explore this point.

We can draw some wider conclusions from these results. The high FNR may
occur because within-subject variability may be elevated by the fact that par-
ticipants selected various random combinations of buttons and pressure levels.
More consistent selections may lead to improved performance. Additionally, the
high FNR values may be due to the limited size of train/test data in our cur-
rent study; collecting an extended data set is a clear next step for this work. In
addition, performance may be improved by considering multiple touch events,
each featuring production of a different pressure level. Furthermore, PushID
could also be combined with a knowledge-based authentication scheme involv-
ing entering a series of symbols each associated with a different button/pressure
level combination. We see value in exploring these ideas in future work.

6 Conclusion

This paper proposes PushID, a behavioral biometric authentication system based
on touch and motion traits extracted from five-level touch force input that seeks
to achieve good usability and security as a lock system for a smartwatch. Our
study indicates PushID ably resisted simulated random guessing attacks. Fur-
thermore, it also achieves an input time that is on-par with other authentication
techniques. We believe these results are promising and support the future devel-
opment of the PushID pressure-based behavioral biometric concept as a viable
smartwatch lock system.
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