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ABSTRACT
Smartwatches support diverse applications but suffer from security issues due to their limited
resources; their small size poorly supports the rich, accurate input required for screen lock authen-
tication. Additionally, traditional approaches to unlocking smart devices, such as Personal identifi-
cation number, are highly susceptible to attacks such as guessing and video observation.
Therefore, we propose PushPIN, a novel scheme that combines knowledge-based and behavioral
biometric approaches to increase security. Input symbols are composed of the selection of one of
four different targets with one of five different pressure levels, for a total of 20 possibilities. We
complement this passcode by capturing behavioral biometric features from screen touches and
wrist motion during input. We present two studies to assess the performance of PushPIN. The first
assesses both usability and security against a random guessing attack. It shows acceptable usabil-
ity—recall times of approximately 8 s and no errors—and strong security: equal error rates of
0.51%. The second study examines the resistance of PushPIN against a video observation attack,
ultimately revealing that 36.67% of PushPINs could be cracked, performance that represents a sub-
stantial improvement over prior work on pressure-based authentication input. We conclude that
pressure-based input can increase the security, while maintaining reasonable usability, of smart-
watch lock systems.

1. Introduction

The increasing power and sophistication of smartwatches
mean they are now capable of supporting a diverse set of
applications and features including: performing fitness track-
ing (Adapa et al., 2018); bio-signal monitoring and logging;
accessing and presenting personal messages and data; mak-
ing and receiving phone calls and; purchasing and other
real-world transactions (Nguyen & Memon, 2018). While
these services provide substantial value, they also raise secur-
ity concerns as they involve collecting and retaining private
user data or providing access to sensitive services, such as
payments. As a result, multiple security technologies and
systems (e.g., user access controls, encryption) need to be
integrated into new smartwatch platforms (Fortify, 2015).

One fundamental challenge in maintaining device security
is ensuring only the legitimate user has access. To achieve
this, early authentication systems on smartwatches mainly
relied on secure authentication to a paired smartphone.
However, as modern smartwatches can perform many func-
tions independently, this approach is no longer sufficient. In
this context, it is critical to develop and deploy unlock sys-
tems that can be implemented and effectively operated on
standalone smartwatches. This is currently achieved by tech-
niques such as Personal Identification Number (PIN),

Android Pattern Lock (APL) (Nguyen & Memon, 2017), or
biometrics (Buriro et al., 2018; Li & Xie, 2018; Lu et al.,
2017; Nguyen & Memon, 2018). However, we note that
while such systems are critical, they are unevenly deployed
on smartwatches. In 2015, for example, only five of the top
10 most popular smartwatches provided a basic lock system
(Fortify, 2015). Furthermore, the dominant lock methods
remain PIN or APL (Fortify, 2015), approaches with well-
documented weaknesses to various primary attacks including
guessing and video observation (Nguyen & Memon, 2018).
Smartwatches are susceptible to these attacks after they are
removed—an event reported to happen an average of 3.17
times per day (Jeong et al., 2017; Li & Xie, 2018)—and then
mislaid, forgotten, or stolen. Furthermore, the small size of
smartwatch touchscreens (typically 30mm square) means
that performance of traditional smartphone lock input tasks
may be impaired by the fat-finger problem (Siek et al.,
2005)—the fact that a user’s finger will obscure screen con-
tents during input, potentially reducing accuracy and
increasing task time.

To address these problems, researchers have begun to
explore lock systems explicitly designed for the smartwatch
form factor. In terms of usability, the Personal Identification
Chord (PIC) (Oakley et al., 2018) sought to address the
problems inherent in small smartwatch screens by designing
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a chorded lock system based on four large buttons that can
be pressed either individually or in pairs (for a total of 10
possible unique inputs). Similarly, Press Touch Code (PTC)
(Ranak et al., 2017) targeted a similar usability problem with
the design of a pressure-sensitive lock system based on
counting the peaks in intentionally fluctuating pressure val-
ues during a single sustained screen touch. A key goal of
these systems is to use alternative input channels (e.g.,
chords, pressure) to increase the number of symbols that
can be generated by touches to a small number of large,
readily accessible on-screen targets. There have also been
complementary efforts to increase the security of existing
smartwatch unlock systems. One area of focus has been to
increase resistance against guessing and observation attacks
by, for example, combining entry of a specific sequence of
symbols with detailed behavioral data captured during the
input process. TapMeIn (Nguyen & Memon, 2018) exempli-
fies this approach by combining a temporal sequence of fin-
ger taps with features derived from the smartwatch motions
they cause; attackers found this input hard to replicate, even
given detailed videos of authentication sessions. Similarly, Li
and Xie (2018) verified users based on a combination of
explicit gestures created by wrist motions and a set of
behavioral features calculated from this input.

Building on these ideas, this paper explores behavioral
biometrics derived from touch screen and wrist motion data
captured during pressure input as a technique to improve
unlock systems on a smartwatch. We argue pressure input is
an interesting and worthwhile modality to study for several
reasons. First and foremost, compared to an input made by
physically tapping different targets, pressure input is highly
unobtrusive. As such it may increase resistance to observa-
tion attack via shoulder surfing or recorded videos
(Krombholz et al., 2016). Second, pressure input requires
limited screen space—many different pressure values can be
specified with a single touch to a single location. As such it
is suitable for a wide variety of device form factors, includ-
ing those with small screens such as smartwatches (Ranak
et al., 2017). Lastly, pressure-based input can combine expli-
cit symbolic passcodes (Krombholz et al., 2016; Ranak et al.,
2017) with data on the patterns of movements and forces
users generate while producing various pressure levels. We
argue this data has the potential to serve as a novel behav-
ioral biometric. Reflecting these goals, this paper presents
PushPIN, a novel multi-factor authentication system for
smartwatches. It combines knowledge-based authentication
using five-force-level input (rather than binary pressure
(Krombholz et al., 2016)) on a 4-key interface, with a behav-
ioral biometric authentication process based on features
from wrist motion and screen touch data. It seeks to reduce
the impact of fat-finger problems through the use of a
reduced number of relatively large on-screen targets (Oakley
et al., 2018). It also increases the size of the available pass-
word space through the inclusion of multi-level pressure.
Finally, it seeks to increase resistance to video observation
attacks by integrating pressure input based behavioral bio-
metrics during input passcode entry.

We present a comprehensive analysis of the usability and
security of PushPIN in two studies. In the first study
(N¼ 30), we collect PushPIN lock codes and input events to
measure time and accuracy in set up and recall tasks and to
build recognizers for user verification of smartwatch. In the
second study (N¼ 10), participants performed a video obser-
vation attack on PushPIN users from the first study. The
results of the first study indicate PushPIN lock codes achieve
acceptable usability with mean set up times of 103.79 second,
recall times of 7.99" 8.07 second, and very high accuracy—
no failed authentication attempts were recorded. Behavioral
features derived from this input achieve 0.16% false-positive
rate and 7.33% false-negative rate in a simulated random
guessing attack, a promising level of performance that sug-
gests that how users perform pressure-based input may be
highly unique. This assertion is born out in the video obser-
vation attack study. Participants achieve an attack success
rate of 36.67%, a substantial improvement over the 97%
reported in prior work (Krombholz et al., 2016) on a binary
pressure-based PIN system. We conclude that multi-level
pressure-based input represents a good solution to increase
the security of smartwatch unlock as it provides a rich set of
biometric features that can enhance resistance to random
guessing and observation attack during a passcode input
process that does not unduly burden users: it remains
acceptably short and reliable.

2. Related work

There are two modes in which an authentication system can
be designed to operate (Teh et al., 2016): identification and
verification. The goal of an identification system is to deter-
mine which individual in a database is the most similar
based on information about the individual. Verification sys-
tems, on the other hand, seek to classify a user as genuine
or an imposter while only storing data about the genuine
user. Due to its relevance to the device unlock scenario, the
work in this paper is limited to verification scenarios.

2.1. Knowledge-based authentication on smartwatches

Smartwatches log, store, and provide access to various pri-
vate user information. This makes the use of lock systems
capable of limiting an attacker’s access to devices imperative.
The dominant approach to this problem involves knowledge
based authentication: users verify their identity by entering
“something they know,” typically a secret code or password.
Common smartwatch techniques are adapted from smart-
phones in the form of PIN and APL. While they are con-
venient and familiar, these techniques are widely reported to
be susceptible to guessing and video observation attacks
(Nguyen & Memon, 2018). Furthermore, the small screens
of smartwatches may lead to fat-finger problems Siek et al.
(2005), which may result in compromised security by reduc-
ing the adoption rates of lock systems (Oakley et al., 2018).

To address these issues, several researchers have proposed
unlock schemes designed specifically for small watch touch
screens. For example, Beat-PIN (Hutchins et al., 2018) and
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PIC (Oakley et al., 2018) solve the fat finger problem by,
respectively, omitting on-screen targets altogether or by pre-
senting a small number of large targets. To support a large
set of lock codes, these systems rely on alternative input
properties, specifically tapping rhythms and chorded input
over multiple buttons. The results of these studies show rea-
sonable usability (e.g., recall times of between 1.7 s
(Hutchins et al., 2018) and 3.84 s (Oakley et al., 2018)) and,
though studies are small scale, the authors speculate they
may also support improved security against vectors such as
brute force attack or observation. This work suggests reduc-
ing the number of on-screen targets in a smartwatch lock
system through the use of a complementary input modality
is a viable strategy to maintain usability while also improv-
ing security. Accordingly, we adopted this approach in the
design of PushPIN.

2.2. Behavioral biometrics on smartwatches

An alternative approach to smartwatch authentication
involves biometrics. While traditional physiological
approaches, such as fingerprints, are well-established, they
are hard to integrate into watch form factors due to the size
and cost of the dedicated sensors required (Nguyen &
Memon, 2018). To address this practical problem, research-
ers have proposed captured and analysing aspects of human
behavior rather than physical traits. For example, data relat-
ing to brain activity (Saulynas et al., 2018), keyboard typing
patterns, speech, hand-writing (e.g., signature production),
and gait have all been studied as behavioral biometrics (Unar
et al., 2014) in order to support user authentication. On
mobile smart devices, user behaviors captured by widely
deployed sensors such as touchscreens (Sae-Bae et al., 2012)
or motion sensors (Buriro et al., 2016, 2019; Li et al., 2021 )
have also been considered as a source of behavioural bio-
metric data to support user authentication. Behavioral bio-
metric authentication systems for smartwatches have also
been implemented with pre-existing built-in sensors (e.g., of
motion or touch) (Nguyen & Memon, 2018) to track and
detect aspects of user behavior that show high differentiation
between individuals. Behavioral biometrics have the advan-
tages that they can support both explicit and continuous
authentication (Nguyen & Memon, 2018; Teh et al., 2016),
and typically show high resistance against attacks such as
observation, especially when used in combination with
knowledge-based passwords (Nguyen & Memon, 2018).

We present a review of smartwatch behavioral biometric
systems used in conjunction with knowledge-based schemes
in Table 1. We report on their performance in terms of
False Negative Rate (FNR, the rate at which a genuine user’s

attempts to authenticate are rejected), False Positive Rate
(FPR, the proportion of non-genuine attempts made by, for
example, other users or attackers that are accepted) and the
Equal Error Rate (EER, the point at which a classifier is
tuned such that FNR and FPR are equal). EER is typically
viewed as representing the middle ground in the trade off
between lenient recognition criteria that accept most genu-
ine user authentication attempts at the cost of also accepting
some imposter attempts (i.e., low FNR, elevated FPR) and
strict authentication criteria that reject most imposters at
the cost of rejecting a higher proportion of genuine user
attempts (i.e., low FPR, elevated FNR) (Saad & Djedi, 2017).
In general, these systems have been assessed by their resist-
ance to random guessing attacks, situations when an
attacker has no information about a user’s passcode and
guesses at essentially chance levels. Resistance to observation
attacks has also been examined in some cases (Li & Xie,
2018; Nguyen & Memon, 2018). This work also relies on a
diverse set of modalities including general hand/arm ges-
tures (Li & Xie, 2018), mid-air gestures (Buriro et al., 2018),
or data captured during traditional input processes such as
entering a PIN (Lu et al., 2017). Performance is diverse and
reporting of measures is not fully consistent. Regardless, it is
clear that achieving strong performance, in terms of low
EERs (or the combination of low FPRs and FNRs) is chal-
lenging: a majority of articles report scores of 20% or greater
on at least one of these metrics. TapMeIn (Nguyen &
Memon, 2018) is an exception to this trend that achieves an
EER of 0.98% in response to a random guessing attack and
between 3.5% and 4.1% for an observation attack. TapMeIn
captured various touch features derived from a bespoke
form of authentication: a passcode in the form of a rhythmic
tapping pattern. This showcases the potential benefits of
capturing biometrics from novel touch behaviors that go
beyond standard taps. We argue that the more performative
qualities of this type of input may increase the salience of
the behavioral biometrics that can be extracted. Based on
this intuition, we designed PushPIN to explore the value of
the behavioral features extracted from both the touch screen
(including touch force data) and wrist motion sensors
(accelerometer and gyroscope) while users explicitly per-
formed a rich and dynamic input task: generating specific
forces during entry of a pressure based secret passcode.

2.3. Authentication via pressure input

Pressure input has a long history in research (Brewster &
Hughes, 2009) with authors claiming it is expressive and
precisely controllable. Reflecting this promising perform-
ance, highly accurate pressure sensors are now available in

Table 1. False Positive Rate (FPR, %), False Negative Rate (FNR, %), and Equal Error Rate (EER, %) of random guessing attacks and FPR and EER from observation
attacks on existing smartwatch authentication systems based on behavioral biometrics.

Work FPR (Random) FNR (Random) EER (Random) FPR (Observation) EER (Observation)

Li & Xie (2018) 0 22 NA 10.6" 14.6 NA
AirSign (Buriro et al., 2018) 21.65 19.48 NA NA NA
VeriNet (Lu et al., 2017) 10.24 20.77 7.17 NA NA
TapMeIn (Nguyen & Memon, 2018) 0.98 5.3 (Sitting)

9.1 (Walking)
1.3 NA 2.3"4.1
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consumer PCs and smartphones, while binary pressure sen-
sors have been implemented in smartwatches. We believe
pressure input is particularly useful in small form factor
devices, as it can provide extra input capabilities without
consuming any of the scarce screen real estate (Ranak et al.,
2017). Beyond these general points, pressure input may also
be specifically useful for authentication scenarios—as mak-
ing variations in pressure input does not involve large-scale
spatial motions, authors have suggested it may be hard to
observe and thus provide resistance to shoulder surfing or
video attacks (Krombholz et al., 2016).

This assertion has been explored in a variety of proto-
types, with mixed results. For example, ForcePIN
(Krombholz et al., 2016) is a PIN enhanced with either soft
or hard pushes, result in doubling the input space of pos-
sible symbols. ForcePIN showed a reasonable recall time of
3.66 second, but low resistance to video observation attack
(Khan et al., 2018); this is because attackers observed more
forceful touches took longer and simply used touch time as
a proxy for pressure, ultimately cracking over 97% of
ForcePINs. PTC (Ranak et al., 2017), a system that authenti-
cates users via counting the number of high-pressure peaks
users make while intentionally oscillating between lighter
and heavier touches, was also highly susceptible to video
observation attacks with video taken at 50 cm: the crack rate
was 100%. Although this dropped to 5% at 3m distance,
this result indicates that visual cues relating to the shape or
motions of the hand and fingers made it clear when users
were exerting binary pressures on the screen.

Pressure has also been integrated into touch-based behav-
ioral biometrics. One important area of this work is enhanc-
ing the security of traditional lock input. On smartphones
De Luca et al. (2012), for example, collected touch-related
features including location, size, speed, duration, and pres-
sure during input of APL and achieved an accuracy of 77%
during a user verification task. Salem and Obaidat (2019)
showed the strongest classification performance in this
area—0.9% EER—in a study using 10 features, including
pressure, related to keystroke dynamics while typing eight
alphanumeric passwords. We argue these initial results sug-
gest that pressure input tasks can yield data that is suitable
for use as a behavioral biometric.

The work in this paper operates at the intersection of this
literature. It leverages the idea that pressure input can
increase the expressivity of touch input on small screen
devices to create an authentication system that supports a
large set of possible passcodes on a small input surface. The
goal is to maintain reasonable performance in terms of
usability while increasing resistance to random guessing
attacks and observation attacks. In addition, we seek to cap-
italize on the prior suggestions that pressure input is hard to
observe to increase resistance to an observation attack. We
do this by examining how effectively the features generated
during pressure input can serve as touch and wrist motion
based behavioral biometrics. Our intuition here is that, while
prior work has demonstrated that attackers can extract data
about pressure input given sufficiently high-quality record-
ings of user tasks (Khan et al., 2018), they may not be

similarly able to extract and attack aspects of the detailed
performance of pressure input represented by behavioral
features. In this way, an approach based on behavioral bio-
metrics may be able to enhance the observational resistance
of pressure-based authentication input.

3. PushPIN system design

This section introduces the threat model underlying this
work and presents a high-level overview of PushPIN, includ-
ing details of the user enrollment and verification processes.

3.1. Threat model

PushPIN primarily seeks to increase resistance against vari-
ous forms of brute force attack including random guessing
and content-aware attacks (Li & Xie, 2018). Random guess-
ing attacks are common and simple. They involve an
attacker who has acquired a user’s device (e.g., via theft) but
has no knowledge about the user or password. Accordingly,
this type of attack may exploit known biases in, for example,
the distribution of symbols users choose for their security
codes. In content-aware attacks, attackers possess personal
information about the user (e.g., birth date) which can be
used to further inform guesses. In addition, PushPIN was
designed to resist video observation attacks on a smartwatch.
It closely follows the threat model in Nguyen and Memon
(2018), as this targets a similar device form factor and scen-
ario. Attackers, including strangers, record videos of a small
number of device unlock processes from a distance and
examine and analyze these in detail. After subsequently
acquiring a user’s device, they attempt to mimic user behav-
ior during authentication to unlock it. In line with
Krombholz et al. (2016), we assume attackers are able to
“clearly observe all sensitive information and behavior” from
the recorded videos. Furthermore, we assume attackers are
aware that PushPIN relies on behavioral features derived
from finger and wrist movements during authentication.
Accordingly, the recorded videos capture not only the screen
of the watch but also the finger, hand, and arm movements
of the user. Finally, we also assume that attackers are able to
practice on their own devices without consequence, but are
restricted to a limited number of attempts to unlock a user’s
device before it bars further attempts.

3.2. PushPIN interface

Pressure input on smartwatches is currently available on
several commercial models (e.g., Apple Watch First
Generation and above). However, current devices report
only binary levels of finger force (e.g., light/strong), preclud-
ing use with a systems designed for fine-grained pressure
input. To side-step this issue, the PushPIN prototype was
implemented on an iPhone X smartphone (iOS 12.1.4)—this
device sports a pressure-sensitive touch screen that returns
continuous data and this family of devices has been widely
used in other work on pressure-based input (Goguey et al.,
2018; Krombholz et al., 2016). To create a watch form factor
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for the phone, we mounted it on an armband and restricted
all input to a 24 by 30mm region in the center of the
screen. Re-purposing a smartphone in this way is a com-
monly used way of exploring next-generation smartwatch
experiences (Gil et al., 2017). Furthermore, while there are
clear weight differences between this smartphone (174 g)
and a watch (e.g., Apple Watch 6’s 30.5 g) we do not believe
the will substantially change the key aspects of users’ behav-
ior we seek to observe. Studies of arm encumbrance (Knight
& Baber, 2007) indicate that significant muscle activity and
participant fatigue occur when wearing a wrist-mounted
wearable computer of 0.54 kg or more and during tasks
involving arm lifts for 10 second or more. Our device is
approximately one third of this weight limit and authentica-
tion tasks, in general, are relatively short. In the remainder
of this paper, we refer to this wrist-mounted device as
a “watch.”

Individual PushPIN passcode items combine a touch to a
specific on-screen button with a specific force applied dur-
ing that touch. Figure 1(a) shows the current implementa-
tion, based on four large (12mm) square buttons that can
be selected with any one of five pressure levels, therefore
supporting a total of twenty distinct inputs. We selected
four targets as this design is used in prior work on smart-
watch authentication that also seeks to present users with
large, readily selectable targets (Oakley et al., 2018). While
these larger buttons may improve usability, we do not
believe they will impact security against observation—cur-
rent systems such as PIN or APL already show very low
resistance against this attack (Hutchins et al., 2018). Rather,
we sought to improve resistance to observation via isometric
pressure input, which may be harder to observe as it does
not entail gross physical motion. We selected five pressure
levels following Goguey et al. (2018), where participants self-
report this scheme (used in a text selection task) enabled
them to achieve high levels of accuracy. In addition, we fur-
ther increase the resistance against observation by including
behavioral biometrics-based authentication. We argue that
touch and wrist motion behavior during controlled pressure
input will be a rich source of information capable of verify-
ing an individual’s identity.

The five pressure levels we used were distributed over the
full scale of values reported by the iPhone but were not
equally sized; boundaries were determined manually during
system design to facilitate accurate selection. Specifically, the
sizes of ranges used for the lightest and two heaviest pres-
sure levels were reduced compared to the second and third
levels. This is because we found heavier and, in particular,
edge pressure levels (i.e., lightest/heaviest) were simpler to
select than the central levels—any light touch will select the
initial pressure level and, similarly, any strong touch will
select the final pressure level, even if it exceeds the max-
imum detectable force. In this way, the two boundary
regions are “infinitely deep,” a quality typically reported to
facilitate accurate selection (Accot & Zhai, 2003). The
iPhone reports pressure in arbitrary units (0–6.66); we meas-
ured the pressure levels corresponding to the five levels
in our system in gram-force using an electronic
scale: 0–54.85; 54.85–167.50; 167.50–280.16; 280.16–333.17
and; 333.17–392.81.

The PushPIN interface supports target selection by simple
green button highlights and pressure input with an inter-
active feedback gauge (Figure 1) that visualizes the current
pressure applied (a red line), the boundaries demarcating
each of the five selectable pressure levels, and the currently
selected pressure level. Pressure levels are selected by
remaining within the same pressure level for 300ms—a
technique and threshold taken from prior work (Goguey
et al., 2018) that is akin to “pressure dwell.” As users apply
pressure to enter a new pressure level, they see an expanding
blue highlight that begins to cover the corresponding region
of the pressure gauge. After 300ms, the gauge region is
completely covered and the highlight turns green to signify
selection. Any prior selection of a pressure level remains
active until a new level is selected. This design ensures that
users do not inadvertently select lighter pressure levels dur-
ing screen release—the inevitably varying pressures that
occur during intentional finger lifts are brief and do not
result in inadvertent selections of undesired pressure levels.
During user input, PushPIN records the following touch
screen data at 100Hz: touchpoint (x/y), touch radius, and
touch force. Additionally, it records the following motion

Figure 1. GUI of PushPIN and example series of scenes while input an entry. (a) Four graphic user interface (GUI) components—(1) delete button, (2) entry progress
window, (3) touch force gauge, and (4) buttons. (b) Holding entry. (c) Releasing entry.
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sensor data at 250Hz: acceleration and rotational velocity
(i.e., from a gyroscope) in x, y, and z axes.

PushPIN passcodes are composed of four sequential pass-
code items, thus enabling a total possible input space of 204,
or 160,000, different unique passcodes. The PushPIN inter-
face also features standard feedback and controls to support
this data entry task: a panel at the top indicates the number
of PushPIN items currently entered and includes buttons to
both delete the previously entered item and to clear the cur-
rently entered sequence of items.

3.3. System overview

As with other biometrics authentication techniques,
PushPIN is composed of two separate processes: Enrollment
and Verification. These are illustrated in Figure 2 and
described below.

Enrollment: Users enter a four-item PushPIN passcode and
a feature vector is calculated. A set of negative samples is
then synthesized based on the statistical distribution of the
features observed in a previously collected data set of
PushPIN enrollments. All samples are then pre-processed
(scaled, re-sampled, and reduced in dimensionality) and
split into training and test sets. Finally, a recognizer is
trained for verification.

Verification: Users unlock their devices by entering their
four-item PushPIN passcodes. Feature vectors are gener-
ated and the trained model is used to determine whether
or not the user is genuine.

Feature vectors are derived by calculating summary statis-
tics from 12 variables from four different behavioral traits
during each PushPIN passcode item entry—force, touch (x
position, y position, and radius), acceleration(x, y, z, and
magnitude), and rotational velocity(x, y, z, and magnitude).
Specifically, for each variable, we calculate the minimum,
maximum, range, mean, standard deviation, and, after
applying zero-padded fast Fourier transformations (FFT),
the top four amplitudes and, for the latter three amplitudes,
the frequencies at which they occur. The top frequency did
not vary (it was always zero), so was excluded. Furthermore,
we calculated skewness and kurtosis for all variables except
touchpoint and radius, as these variables showed minimal

variation in these metrics. Finally, we also included three
features related to the input timing trait—the touch duration
in ms and the number of samples logged for both touch and
motion data. These served as proxies for touch duration.
Ultimately, this led to 165 features for each PushPIN item:
three-timing features; three touch metrics by 12 features;
one force metric, four rotational velocity metrics, and four
acceleration metrics, each with 14 features. Consequently,
each four-item PushPIN had 660 features. Data for all fea-
tures were normalized within training sets.

PushPIN uses a binary classifier trained using the com-
bination of each users’ genuine data (captured during enrol-
ment) and imposter data synthesized from feature
distributions derived from a data set of PushPIN users. In
comparison to alternative approaches such as the use of a
one-class classifier (Buriro et al., 2018), this reduces the
number of samples each user needs to provide during enrol-
ment. We opted for this approach as prior work has sug-
gested users are reluctant to provide a large number of
samples during enrolment (Nguyen & Memon, 2018).
Furthermore, the use of synthesized imposter data means
that no genuine data from other users needs to be stored or
used to train the system. Specifically, we synthesize PushPIN
feature vectors from a data set containing 900 PushPIN
entries captured from 30 different users (30 entries each),
including the genuine user. For each possible combination
of pressure level and button, we calculate the mean and
standard deviation of each of the 165 features. We then cal-
culate z-scores for this data, sample 3480 individual instan-
ces from the feature distributions, and combine them into
870 complete four-item PushPIN passcode feature vectors.

In addition to these methods, we explored three different
variables that impact the optimization of PushPIN classifiers.
These are:

Feature dimensionality reduction. A large number of features
may inflate classification performance; to mitigate this, we
apply dimensionality reduction techniques (Teh et al.,
2016). We first culled constant or quasi-constant features
that had a variance of less than 1%. We then applied five
automatic techniques to the remaining feature set:
Principal Component Analysis (PCA); Neighborhood
Component Analysis (NCA); Linear Discriminant Analysis
(LDA); cross-validated recursive feature elimination (RFE)

Figure 2. Overview of PushPIN system applied for the video observation attack study.
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with a linear Support Vector Machine (SVM) estimator
and; a Gini importance based feature selector.

Train and test set size. We first split the data into differently
sized train and test sets that each maintain the original
ratio between the genuine user and synthesized imposter
data. While splitting the data, we also maintained the entry
order of genuine user data as this best represents the real-
istic context of a genuine lock scheme enrolment session.
We study the impact of training set size by assessing per-
formance with between 3 and 25 genuine user entries. The
goal of this process is to derive an appropriate minimum
number of samples to capture from users in the enrolment
stage. Keeping the number of samples as low as possible is
desirable as it reduces the burden on the user during
enrolment (Nguyen & Memon, 2018).

Re-sampled set size. After splitting the data, we adjust the
amount of re-sampling used for instances of both genuine
user and imposter for minimizing the impact of imbalan-
ces between classes of train data on classifier perform-
ance—we up-sample genuine user data and down-sample
imposter data to create matched sets via random re-
sampling. We explore performance from 100 to 800 in
steps of 50 samples to identify an optimal size for the
training set. We note re-sampling was only applied to the
training sets.

We explore the use of three different binary classifiers,
each frequently used in research in behavioral biometrics
(Teh et al., 2016): SVM, K-Nearest Neighbor (KNN), and
Random Forest (RF). A 10 fold cross-validated grid-search
is used to tune hyperparameters of each classifier (Scikit-
learn, 2021).

The verification process checks whether a new passcode
that has been entered matches the profile of the genuine
user or not. This process involves a simple match on the
equality of the passcodes in terms of the sequence of targets
and pressure levels entered as well as an assessment of
whether the behavioral measures match the original user.
Before matching, entered data is subjected to the same proc-
esses of feature extraction, normalization, and dimensional-
ity reduction used during enrolment.

4. Study 1. Data collection and random attack

We conducted a user study to collect data during PushPIN
enrolment and verification to establish user performance on
basic usability metrics and provide a data set with 900 data
points to both generate the required binary classifiers and
also to assess classification performance through simulated
guessing attacks. The study was approved by the local insti-
tutional review board (IRB).

4.1. Method

4.1.1. Participants
A total of 30 participants were recruited (mean age ¼ 23.07,
r¼ 2.66) from posts to local university social media groups.
In total, 18 were male and 12 female. Participants were

screened to exclude left-handedness to increase the homo-
geneity of captured data. Three identified as both-handed
and one indicated a preference for wearing a watch on their
right wrist. We surveyed their experience with mobile and
wearable technology and pressure input using 5-point Likert
scales. They reported high familiarity with smartphones
(l¼ 4.47, r¼ 1.31) but not smartwatches (l¼ 1.33,
r¼ 0.76). In terms of pressure input, they reported moder-
ate experience with this technology on smartphones
(l¼ 2.27, r¼ 1.51) and low experience with it on smart-
watches (l¼ 1.27, r¼ 0.69). Additionally, 21 reported they
were familiar with devices powered by Google’s Android
platform, while eight were familiar with Apple’s iOS and
one was familiar with both.

Participants were compensated for the study with
approximately 5 USD in local currency. Additional compen-
sation was available for the second session but was contin-
gent on performance: participants were informed they
would receive 5 USD for recalling their PushPIN correctly
so long as it did not overlap with the PushPIN of any other
study participant who attended the experiment on the same
day. This compensation structure was designed to encourage
participants to select both memorable and unique passcodes.

4.1.2. Apparatus
Two study apps were implemented on the watch introduced
in section 3.3. The first was a demonstration app that show-
cased the targets and interactive feedback. It was used to
familiarize participants with PushPIN. The second app exe-
cuted the study procedures and collected data as
described below.

4.1.3. Procedure
The study was conducted in a quiet office environment with
participants seated in a chair with no armrests. The study
ran over two days and each participant completed the fol-
lowing phases:

Day 1—Instructions: The study began with participants read-
ing instructions and agreeing to and signing consent
forms. Participants were able to ask questions to clarify
any uncertainties. They were also requested to complete all
input tasks both rapidly and accurately, to keep their watch
arm in free-space (e.g., not resting on a surface) during
study tasks and freely and comfortably rest at any time
between study tasks. They were mandated to take a 5-
second break between successive PushPIN entries to min-
imize fatigue. They were not explicitly informed of the
behavioral biometric aspects of PushPIN during this study.
There were given a series of guidelines to avoid large-scale
within-subject variability between different PushPIN
entries: they should not rest or support their arm, they
should not perform any extra activities such as speaking
should try to minimize fidgeting or adjusting their body
pose. While participants were aware they would be asked
to recall their PushPIN after one day, we did not explicitly
restrict (or encourage) them from marking down or
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otherwise externally storing their created passcode. This
protocol follows closely related studies Oakley et al. (2018)
and reflects the fact that such note-taking is a common
real world password recall strategy Anwar and Imran
(2015). Observing how it is deployed during PushPIN use
may help shed light on how challenging participants
expected it to be to recall their PushPINs.

Day 1—Experience: The participants used a dedicated app to
become accustomed to PushPIN input. The app graphically
highlighted a target button and pressure level with yellow;
participants needed to select this target and pressure level.
Participants practiced PushPIN input using this application
until they were satisfied they were familiar with it. Overall,
they spent on average 3.88min (r¼ 1.62) on this process.

Day 1—Creation: The participants created a four-item
PushPIN passcode by consecutively selecting targets and
pressure levels on the watch. We applied a mandatory
selection policy that restricted the re-use of pressure lev-
els—each of the four items entered needed to use a differ-
ent pressure level. We applied this policy to ensure we
collected diverse pressure levels in the course of the study
to best support training. During passcode creation, partici-
pants were also able to delete or clear entered items at any
time. After four items were entered, they selected a button
to move to the next phase.

Day 1—Confirmation: Participants were required to re-
enter their four-item PushPIN passcode, using a similar
interface to the creation phase. This confirmation pass-
code was checked to determine if targets and pressure
levels matched the created passcode. If they did not,
participants moved back to the creation phase. If they
matched, the PushPIN was set and could not be modi-
fied at any further point in the study. During the con-
firmation phase, it was also possible to tap a cancel
button to return to the creation phase.

Day 1—First Practice: Participants used the same interface
to correctly enter their PushPIN ten times. Incorrect
entries were logged and also needed to be repeated.

Day 1—Distractor: Participants completed distractor tasks to
erase their short-term memory of their PushPIN—they first
played a simple web puzzle game “Free Brain Age”1 for
3min. After playing the game, participants filled in a
demographic questionnaire.

Day 1—Recall: Participants were asked to correctly recall
their PushPIN by entering an identical sequence of targets
and pressure levels. Trials were counted as failed only if
participants entered wrong button/force combinations. We
did not consider any behavioral biometrics features during
the data collection phases of this study. They were given
five attempts to do this. A failure to accurately enter their
PushPIN within five attempts led to the termination of the
study. Participants were not able to look at notes or other
material (if they had made any) during this task.
Participants who successfully entered their PushPIN com-
pleted a short questionnaire about their usage of primary
unlock systems on smart devices and their perceptions of
the usability of PushPIN.

Day 1—Second Practice: Participants completed a session
structured identically to the first practice. It collected add-
itional ten correctly matched PushPIN passcodes and was
the final task on the first-day of the study.

Day 2—Recall: The second day of the study took place
between 24 and 72 hr after the first day. It started with a
recall test, structured identically to the Day 1—Recall ses-
sion. Furthermore, participants reported memorability and
any technique used to remember their passcodes in this
session (section 4.1.4).

Day 2—Third Practice: Participants completed a third and
final practice session, structured identically to the prior
two sessions. It was the final task of the study.

4.1.4. Measures
We logged captured the following objective metrics during
PushPIN creation: PushPIN passcodes, the sequences of but-
ton—pressure level combinations created by participants;
Setup time, the moment from the start of the creation phase
through to the end of the confirmation phase and the suc-
cessful registration of a PushPIN passcode; Setup cancels, the
number of times participants canceled the creation process
during creation or confirmation phases; Setup deletions, the
number of times participants deleted passcode items during
creation or confirmation phases and; Setup mismatches, the
number of times participants’ creation and confirmation
passcodes did not match. Also, we captured the following
objective metrics during each recall session: Input time, the
period between tapping first entry and final entry of a cor-
rect passcode; Recall rate, the proportion of participants
who correctly enter their PushPIN passcodes within five
attempts and; Recall attempts, the number of attempts par-
ticipants required to correctly enter their
PushPIN passcodes.

We also captured subjective measures at various points.
After each recall phase, we captured the System usability
scale (SUS) (Bangor et al., 2009), an instrument that meas-
ures the perceived usability of the system via 10 questions
with 5-point Likert scales, and the NASA task load index
(TLX) (Hart & Staveland, 1988), a widely used tool to assess
workload. At the end of Day 2—Recall, participants rated
the difficulty of memorizing their PushPIN passcode on a 5-
point Likert scale and answered a free-text question inquir-
ing about any remembrance techniques they used for their
PushPIN passcode. Finally, to support future analysis all
practice sessions for Day 1 and Day 2 were recorded by a
camera (either a Nikon D610 or a GoPro Hero 4) positioned
50 cm in front of participants. This captured a full view of
the input task included the watch screen as well as the par-
ticipant’s fingers and entire upper body: see Figure 3(a) for
an example.

4.2. Results

We present results describing PushPIN in terms of both
objective and subjective usability, and an analysis of its
security based on both the created passcodes and the
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viability of the pressure-based input it supports as a biomet-
ric. We report data from the full set of 30 participants
across both days of the study—no participants dropped out,
nor failed to complete recall tasks.

4.2.1. Usability
Table 2 shows objective performance data during PushPIN
use for both setup and recall phases on day 1 and day 2 of
the study. Recall rate is not shown as all participants cor-
rectly recalled their PushPINs during all stages of the study:
it is 100% throughout. Beyond this high success rate, the
most notable data are the temporal data—both setup and
input times are relatively long compared to figures reported
for more standard authentication techniques such as PIN.
For example, Oakley et al. (2018) report PIN setup times on
a smartwatch to be 11.1 second and input times to be
1.34 second, figures that are between 10% and 17% of the
PushPIN data captured in the current study. Furthermore,
ForcePIN (Krombholz et al., 2016), a system that used two
pressure levels during PIN entry on a smartphone reports a
mean input time of 3.66 second (45.81% of our data). While
novelty effects no doubt account for some of these differen-
ces, particularly in terms of setup time, we note the tem-
poral performance reported in this study is relatively
substantial compared to these baselines. However, data from
PushPIN compares more favorably to prior authentication
systems that seek to resist an observation attack. For
instance, Undercover (Sasamoto et al., 2008), a system in
which haptic cues transmit visually hidden signals during
authentication, reports median recall times of between 32
and 45 second. Similarly, Spinlock, Colorlock, and Timelock,
systems that rely on haptic or audio cues, in conjunction
with input actions such as dwell, to resist observation
(Bianchi et al., 2012) show prolonged authentication times
of between 8.03 to 20.09 second. While much of this litera-
ture lacks comparison points for setup times, we believe this
data is sufficient to suggest that PushPINs usability

performance is acceptable in the context in which it was
designed: to resist video observation attacks.

In contrast to these extended times, input actions to cor-
rect errors, and the occurrence rate of errors themselves
were very low. In the Day 1 Recall session, no participant
inaccurately entered a PushPIN passcode. While perform-
ance decreased on Day 2, it remained acceptable; the mean
number of recall attempts was 1.33 (SD 0.8) and all partici-
pants completed the recall task within the allowed five
attempts. A Mann-Whitney test (as the data was not nor-
mally distributed) revealed the recall attempt count was not
significantly different between the two study days. We also
note that the increased number of incorrect entries in Day 2
did not result in longer input times or ultimately result in
recall failures. We conclude that although input tasks were
prolonged with PushPIN, they remain acceptable with
respect to prior systems with similar security objectives (i.e.,
increasing resistance to shoulder surfing as in Bianchi et al.
(2012); Sasamoto et al. (2008)), and participants are capable
of completing them with a very high degree of accuracy. We
believe this data supports the viability of PushPIN as an
observation-resistant smartwatch authentication technique.
The costs to usability that it incurs are reasonable with
respect to prior systems with similar objectives.

4.2.1.1. Workload and perceived usability. Table 3 shows a
summary of SUS and TLX scores for PushPIN for both Day
1 and Day 2. Shapiro-Wilk tests showed both SUS and TLX
data were normally distributed, so we ran t-tests on the
scores between Day 1 and Day 2. SUS showed no significant
difference, suggesting usability between setup and recall
processes was similar. It had an overall mean of 60.5 which
can be interpreted as corresponding to an acceptable level of
usability (Bangor et al., 2009). On the other hand, TLX
scores varied more significantly between the two days
(p< 0.001), hovering around the mid-point on the scale on
Day 1 and showing a marked drop on Day 2. This suggests
that while the PushPIN setup tasks were moderately taxing,

Table 2. Summary of usability data for PushPIN Setup and Day 1 and Day 2 Recall sessions.

Setup Day 1 Day 2

Time Cancels Deletions Mismatches Input Time Recall Atts. Input Time Recall Atts.

l r l r l r l r l r l r l r l r

103.79 62.34 0.6 1.07 0.43 1.01 0.07 0.37 7.99 2.58 1 0 8.07 2.65 1.33 0.8

“Recall Atts.” is a number of recall attempts during single recall session. All times are in seconds, while all other data are counts. (l: mean, r: stand-
ard deviation).

Figure 3. Example scenes of recorded video during the data collection study and screen log of attack study. (a) Recorded video of victim. (b) An attacker explores
the recorded video of the victim via the video player. (c) An attacker modifies the recorded video of the victim via editor software.
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the shorter and simpler recall task on Day 2 placed low
demands, in terms of workload, on participants.

4.2.1.2. Memorability and remembrance techniques.
Participants reported few difficulties in memorizing their
PushPINs (l¼ 2.27, r¼ 1.01). They used a range of differ-
ent remembrance techniques. Six participants indicated they
noted down their PushPINs, four used digital copies on
their mobile devices, one sent it to him/herself in a messen-
ger application and one wrote it down on a sticky note.
None reported referring to their notes during the recall
tasks. Besides, nine participants stated they used spatial pat-
terns such as a shape (e.g., “N”) or sequence (e.g., clockwise)
to remember buttons, and one reported use of existing per-
sonal information (their phone number). Pressure levels
were selected to be a sequence of integers (four partici-
pants), a musical rhythm (four participants), a shape (two
participants) or to reflect personal information (three partic-
ipants), or simply the ease of entering pressure levels (one
participant). The relatively low rate with which participants
used personal information to compose their PushPINs (4/30
participants) is promising, as this remembrance technique
has been previously identified as highly exploitable
(Bonneau et al., 2012).

4.2.2. Security
We considered the security of PushPIN based on an analysis
of PushPIN passcodes generated by participants and via an
assessment of the security of using the pressure-based input
as a behavioral biometric.

4.2.2.1. PushPIN frequency analysis. Biases in PushPIN item
selection could reduce its security. To make a preliminary
assessment of how this issue might impact PushPIN, we first
calculated the usage frequency of each of the 20 PushPIN
items—see Figure 4. The data show a relatively even use of

the available input symbols: the data for all codes hovers
around 25% for the selected target and 20% for the selected
pressure level, values which indicate an even distribution
(see the row and column totals in the figure). There may be
a bias to select targets and pressure levels as “matched pair”
as, for example, the top-left target is commonly used with
the lightest pressure level (8.33%) and the top-right target
with the second-lightest pressure level (9.17%). This may
correspond to the use of what participants perceive to be
the “first” and “second” targets with the “first” and “second”
pressure levels. Some biases also appear in the data from the
initial PushPIN items, with participants showing a marked
tendency to start with the heaviest pressure level (36.67%)
and, to a lesser extent, the top-left target (33.33%). In the
final PushPIN item data, the top-right target was very infre-
quently chosen (10%). In the first and last item data, we
also note further evidence for use of “matched” combina-
tions of targets and pressure levels—the bottom-right target
with the heaviest pressure level (initial item, 13.33%) and
top-left target with the lightest pressure level (final item,
13.33%). In general, we conclude that the distribution of
selected PushPIN symbols was relatively even, but that the
tendency for participants to match pressure levels and target
locations is a trend that attackers may be able to exploit
during guessing attacks. We also note this tendency may
have been implicitly encouraged by our policy of not allow-
ing participants to select the same pressure level twice. As
such it may reduce the resistance of PushPIN to guessing
attacks and would not be recommended for use in any
real system.

4.2.2.2. PushPIN pattern analysis. As with other authentica-
tion systems, such as PIN, users can opt to generate patterns
that repeat items, typically to improve memorability. Such
patterns can be exploited by attackers. The policy used in
this study mandated the use of unique pressure levels for

Table 3. TLX and SUS questionnaire data from Day 1 and Day 2 (l: mean, r: standard deviation).

TLX

Mental demand Physical demand Temporal demand Performance achieved Effort expended Frustration experienced Overall workload SUS

l r l r l r l r l r l r l r l r

Day 1 10.07 5.43 10.83 5.73 8.13 4.67 6.83 5.74 8.67 5.21 6.67 4.85 51.20 20.83 58.67 15.48
Day 2 5.33 4.74 6.57 5.42 5.90 5.33 5.67 6.13 6.73 4.14 5.03 4.54 35.23 21.93 62.42 13.42

Figure 4. Ratio of each PushPIN item used (%). (a) Overall. (b) First PushPIN item. (c) Final PushPIN item.
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each item and so prevented the use of these strategies for
pressure. Accordingly, we examined the PushPIN passcodes
for this behavior in terms of target selection only. We did
this by counting the occurrence of a wide range of repeating
patterns—see Table 4. In total, seven participants (23.3%)
employed one of these patterns, with no more than two par-
ticipants employing the same pattern. This contrasts well
with prior work reporting much higher rates of repeated
pattern use in PINs (e.g., 46.67% (Oakley et al., 2018)). On
the other hand, we note this indicates that 23 participants
used all four items in their PushPIN, a high rate that attack-
ers may also be able to exploit. Perhaps reflecting the preva-
lence of this pattern, one PushPIN was created by two
participants. Additionally, there were seven patterns of target
selections that repeated a mean of 2.71 times and two
repeating pressure selection patterns that occurred a mean
of 2.5 times. This suggests that as with other knowledge-
based authentication systems (Oakley et al., 2018), PushPIN
suffers from biases in the way users select passcodes; poli-
cies, such as mandated initial selections (Cho et al., 2017),
which can alleviate the tendency for participants to com-
mence their lock codes in predictable ways, would likely
need be used to mitigate these.

4.2.2.3. Recognizer performance. We sought to select a clas-
sifier, dimensionality reduction method, and the minimum
number of samples to support good performance for distin-
guishing a genuine user from an attacker during PushPIN
input. We examined performance via the metrics of: FPR,
FNR, and EER. We selected the best model as the one
achieving the lowest EER: 0.51%. This used PCA feature
dimensionality reduction (threshold ¼ 80%, leading to a
reduction of the number of features to a mean of 51.7
(r¼ 2.61)), a training set size of 25, re-sampled set size of
250, and an RBF-SVM recognizer (gamma ¼ 0.001, and C
set to either 1 (28 cases) or 10 (2 cases)). The algorithm to
generate this model is illustrated in Figure 2. Full details of
the model performance on the test data of each participant
are presented in Table 5. We argue this level of performance
suggests PushPIN is a viable unlock technique: it combines
a low FNR, authenticating genuine users in almost all cases,
with a fair FPR, suggesting it provides reasonable security
against attackers who are aware of the lock code but lack
details or recordings of how users actually perform the

physical input. Performance in terms of the key metric of
FPR contrasts well with closely related watch authentication
schemes such as TapMeIn Nguyen and Memon (2018):
0.98% versus 0.16% in the current work.

To arrive at this final model, we simply selected the fea-
ture selector (PCA) and classifier (RBF-SVM) that yielded
the best performance. Selecting suitable enrollment and re-
sampled set sizes was more challenging. Figure 5(a) illus-
trates how the EER varies along with the range of values we
considered. The performance was optimal with an enroll-
ment set size of 25, the maximum supported by our study
design; given the general downward trend in this chart, it is
possible that larger sets would further improve performance.
Increases in re-sampled set size show more modest improve-
ments; we selected 250 (generated from an enrolment set
size of 25) as the size required to achieve reasonable
performance.

4.2.2.4. Trait ablation analysis result. We performed trait
ablation to investigate the contribution of each sensor
channel—see Table 6 for a list of channels—to the user
verification performance we report (Beyan et al., 2021).
We did this by the simple expedient of introducing a new
initial step in our data processing pipeline: we remove all
data from a sensor channel. We then create and test new
recognizers following otherwise identical procedures. We
calculate the importance of a given sensor channel by
subtracting the verification accuracy of each ablated recog-
nizer from that achieved by the original recognizer. This
data is reported in Table 6 for all sensor channels. The
results indicate that timing features provided the highest
contribution to recognizer performance. This is in line
with prior work on behavioral biometrics on smartwatches
(Nguyen & Memon, 2018) which is entirely reliant on
this trait. We note force features provided the second
most prominent contribution, suggesting they may be an
effective complement for timing features. In addition,
motion features made quite limited contributions. This
suggests that participants’ arm motions during PushPIN
input had limited variability and salience.

5. Study 2. Video observation attack

We conducted a study to measure the security of the
PushPIN prototype against a video observation attack. This
study involved a new set of participants, acting as attackers,
who were informed about the operation of the system then
watched videos of the participants in the data collection
study and attempted to enter their PushPINs. The study was
approved by the local IRB.

Table 4. The number of PushPINs that contain an item used twice or more.

Patterns of button XX?? X?X? ?XX? ?X?X ??XX XXX? XX?X X?XX ?XXX XXXX Total

Count 2 2 1 1 1 0 0 0 0 0 7
Ratio (%) 6.67 6.67 3.33 3.33 3.33 0 0 0 0 0 23.33

“X” represents an item that is used more than twice in a given PushPIN, and “?” represent any other item.

Table 5. Random attack performance using optimal recognizer configuration
(PCA feature reduction, training set of 25, re-sampled set size of 250, RBF-
SVM classifier).

Accuracy FPR FNR EER

l r l r l r l r

99.6 0.6 0.16 0.35 7.33 13.37 0.51 1.14

The unit is % for all metrics. l is mean, r is the standard deviation.
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5.1. Method

5.1.1. Participants
We recruited ten new participants to serve as attackers in
this study via social media channels. All were students at
the local institution, five were female and they had an
average age of 20.9 (r¼ 1.52). Participants were also
screened for right-handedness to ensure homogeneity with
the original study. Nine of the participants reported wear-
ing a watch on their left wrist; the other wore a watch
interchangeably on either wrist. All participants frequently
used smartphones and five indicated they frequently used
pressure input on their phones. Only one participant had
previously used a smartwatch and had not experienced
pressure input on the watch. Three participants stated
that they had previously engaged in shoulder-surfing of
phone lock codes: one had attacked APL, one PIN, and
the final one had previously attacked both of these
schemes. Finally, one attacker was familiar with photo or
vector image editing software, but none had experience
with movie editing software. They were compensated with
approximately 10USD for participation and received add-
itional compensation of 5USD for each PushPIN they suc-
cessfully cracked. Each participant had the chance to
crack three PushPINs.

5.1.2. Apparatus
The study took place in the same environment, and partici-
pants used the same furniture, as in the data collection

study. The watch used in this study was also identical to the
data collection study. Three different applications were used
in this study; one to provide familiarization with PushPIN, a
second to freely practice attacks, and a final one on which
attacks against PushPINs created by the participants of the
data collection study were realized. Participants were also
provided with a PC (laptop with macOS version 10.14.6)
and a 22-inch monitor on which to view, edit, examine and
explore the videos of the PushPIN unlock they were asked
to crack. A video player (Quick Time), editor (iMovie) and
basic tools to capture and edit screenshots (Preview) were
available on the PC. Figure 3(b,c) are example scenes of
using those tools for attacking. The PC was also used to fill
in the study questionnaires.

This study used the videos of successful PushPIN input
collected in the data collection study. For each of the ori-
ginal participants, we selected two representative PushPIN
entry trials which show clear depictions of the screen and
input, the touching fingers, and the participants’ upper body
pose and motion. We limited the number of recordings to
two per participant as it would be challenging to observe
multiple unlocks in the real world.

5.1.3. Procedure
Each attacker was allocated three Push PINs to attack, such
that 30 attacks were made in total—one for each PushPIN
created in the data collection study. This study took
approximately 1 hr to complete. It started with instructions
that explained the purpose of the study and the operation of
PushPIN and then moved on to a practice phase where the
attacker could practice with the PushPIN system until they
were comfortable with its operation. They then received
additional information on the operation of PushPIN,
included a detailed explanation of the touch and wrist
motion behavioral biometrics data captured, the summary
statistics generated and the features used. We also informed

Figure 5. Box plots of the effect by enrollment set and re-sample size on EER—Blue squares are mean EER of each box plot. (a) The effect by enrollment set size
on EER. (b) The effect by resampling size on EER.

Table 6. Result of feature ablation analysis. l is mean, r is the stand-
ard deviation.

Traits Acceleration Rotation Velocity Touch Force Timing

l 1.40 2.11 3.87 6.76 29.64
r 1.18 1.87 2.36 3.39 12.01

12 Y. SONG AND I. OAKLEY



participants that success in cracking PushPINs would likely
be achieved by careful observation and imitation of the
input shown in the videos. Next, they practiced an observa-
tion attack by examining a video of an experimenter enter-
ing a PushPIN with the image and video playback and
manipulation tools provided. They practiced entry of the
observed PushPIN in the practice app and finally attempted
to crack it in the authentication app.

After completing these instructional and practice activ-
ities, participants began to crack their assigned PushPINs,
following a similar process to the practice attack. They
viewed, captured, and manipulated video of successful
PushPIN entries, freely practiced replicating the input they
observed and, when satisfied, attempted to authenticate with
their targets’ PushPINs. They were given a maximum of
15min and five attempts to crack each PushPIN. From these
activities, we logged the attack success rate or proportion of
PushPINs that were cracked, the number of attempts made
to crack each PushPIN, the time taken for each attack, and
self-ratings (collected on a 5-point Likert scale) of the diffi-
culty of each attack. A post-study interview asked partici-
pants about their strategies for, and experience of,
attacking PushPIN.

5.2. Results

In total, 11 PushPINs (36.67%) were cracked; one attacker
failed in all attacks, seven attackers had a single success, and
two attackers each successfully attacked two PushPINs.
While this indicates that attackers were able to glean suffi-
cient information about PushPINs to support an attack, it
also suggests the process is challenging—almost two-thirds
of attacks failed. This contrasts to near-perfect observation
attack rates for prior pressure-based authentication input
techniques. Khan et al. (2018) report more than 97% of the
lock codes in their system, which involved input with two
pressure levels and no use of behavioral features or analysis,
were cracked when attackers were provided with a top-down
video of a successful authentication attempt. Figure 6 illus-
trates the histogram of failed attack attempts: an overall
mean of 3.63 (r¼ 1.97). It suggests, as with many prior
input schemes, that some PushPINs were relatively weak
and easy to enter (i.e., those cracked on the first attempt)
while the majority remained more challenging. We note the
difficulty in cracking PushPINs was predominantly due to
difficulties in mimicking the behavior of the observed users:
of the 109 failed attacks recorded in the study, only 4

(3.67%) involved a failure to enter the correct sequence of
targets and pressure levels and 105 (96.33%) were denied
based on a failure to match the behavioral features. This
suggests that although PushPIN codes are readily observable
in a video attack, the biometric behaviors captured during
PushPIN input are relatively hard to accurately observe or
precisely imitate.

5.2.1. Attacker effort
Overall, attackers spent a mean of 8.57min (r¼ 2.89) to
attack the PushPINs of each victim. During each attack
task, the attackers observed videos a mean of 9.87 times
(r¼ 7.26) and used the rewind controls to re-examine sub-
sections a mean of 13.63 times (r¼ 9.68). They practiced
a mean of 7.57 times (r¼ 6.27) prior to initially attempt-
ing to attack each PushPIN. These efforts were viewed as
challenging. Attackers rated the perceived difficulty of
completing an attack as a mean of 4.13/5.0 (r¼ 1.11). We
also compare the means of these measures recorded for
successful attacks versus unsuccessful attacks. Completion
time and the number of observations were normally dis-
tributed so we applied t-tests. Mann-Whitney tests were
used for other measures. The only significant difference
between successful attacks and unsuccessful attacks was in
perceived difficulty; a mean value of 4.73/5.0 when the
attack failed attack and 3.09/5.0 when it succeeded
(p< 0.001). The high difficulty ratings for failed attacks
highlight the challenges participants experienced in mim-
icking and cracking the majority of PushPINs.

To support their tasks, attackers used several tools to
clearly observe the behavior of victims and take notes,
including paper to record each of the victim’s PushPIN (all
attackers). Eight attackers also used QuickTime player to
freely play, rewind, and rotate the videos while the remain-
ing two attackers used iMovie to play, but also crop and
magnify sections of the videos. Their description of the
strategies they used for video observation generally focused
on the specific features they carefully observed and later
mimicked during attacks. Nine attackers directly mentioned
touch features such as force (six attackers), centroid location
(five), touch time (five), and touch radius (two). Four
attackers mentioned observing motions of the watch such as
tilting or the posture of arm or hands.

6. Discussion

6.1. Security of PushPIN

Results from the data collection study suggest that PushPIN
has the potential to achieve a high level of security. Metrics
in the random guessing attack show very high levels of per-
formance can be achieved—the EER is 0.51% and the opti-
mal FPR is 0.16%. This compares well to similar attacks
conducted on closely related systems. TapMeIn (Nguyen &
Memon, 2018), for example, involves knocking patterns on
a smartwatch and was reported to result in an optimal FPR
of 0.98% and EER of 1.3%. PushPIN’s non-conventional
symbolic format, in which single inputs involve specifying

Figure 6. Histogram of the number of incorrect attempts.
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two separate values simultaneously, may also support or
encourage the creation of diverse secret codes. Evidence to
support this assertion comes from the data on PushPIN
item selection. Participants used all items fairly evenly sug-
gesting PushPIN may be resilient to brute force attacks
based on item usage frequency. One caveat to this sugges-
tion is the presence of biases in the selection of first and last
PushPIN items. Further evidence for the strength of
PushPIN against guessing attacks comes from the low use of
repeated patterns. Prior work studying smartwatch PIN
entry (Oakley et al., 2018) has suggested the use of repeated
patterns was prevalent—46.67% of PINs involved common
repeating patterns compared to just 23.33% with PushPIN.
We also note that just 4 (13.33%) of study participants indi-
cated relying on, or reusing, personal information (such as
birth dates or phone numbers) in their PushPINs. This
again stands in contrast to the relatively high rates with
which these insecure practices have been reported to occur
in studies of standard watch PINs (Oakley et al., 2018).
While considerably larger studies would be needed to reli-
ably determine the actual distribution of PushPIN symbols
that users opt to select, we believe the limited data provided
in the current study are promising. Taken together, we
believe this evidence supports the claim that PushPIN shows
the potential to achieve good security against brute
force attacks.

We also report on performance against the video obser-
vation attack. PushPIN shows greatly improved performance
over closely related prior work. For example, ForcePIN
(Khan et al., 2018), a PIN system that uses binary pressure
levels, was reported to be highly susceptible to observation
attack, with over 97% of codes being cracked. This stands in
stark contrast to the 36.67% reported in the current study.
We attribute these differences to both the increased number
of pressure levels in PushPIN and, most critically, to the
inclusion of behavioral features in its recognizer. The diver-
sity of features that contribute to the recognizer’s perform-
ance include, in order of importance, timing-related
features, followed by pressure, touch, and wrist motion-
related features. The high proportion of crack attempts
(96.33%) that included the correct button and pressure
selections but failed on the behavioral features suggests that
observing and imitating this diversity of features was
extremely challenging for attackers.

In addition, we note that attackers spent considerable
time preparing their attacks (8.57min) and self-reported
attacking PushPIN to be challenging (4.13/5). This, in com-
bination with the high quality of material provided to sup-
port attackers (videos clearly showing input processes as
well as full information on the operation of the scheme and
opportunities for practice), suggest that while observation
attacks on PushPIN are clearly possible, they would be diffi-
cult to conduct in real life. We believe the results of the
security study suggest PushPIN offers improved security ver-
sus observation when compared to both standard authenti-
cation techniques (e.g., PIN) or prior research prototypes
(Hutchins et al., 2018; Zhao et al., 2017) for smartwatches.

6.2. Usability of PushPIN

We assessed the usability of PushPIN from a wide range of
perspectives including setup and recall times, error rate, per-
ceived memorability, and the subjective measures of SUS
and TLX. While data remain reasonable throughout, some
key differences deserve discussion. Perhaps most notably,
both setup (104 s) and recall (8 s) times were lengthy com-
pared to closely related prior work such as ForcePIN
(authentication time is 3.66 s) (Krombholz et al., 2016) or
Beat-PIN (setup time is 12.3 s and login time is 1.7 s)
(Hutchins et al., 2018). While there are numerous possible
explanations for this, the most likely of these is a combin-
ation of the increased complexity of multi-level pressure
input and participants’ lack of familiarity with this modality.
It may be interesting for future work to examine whether
performance in recall task time decreases with longer peri-
ods of use. On the positive side, we note that PushPIN input
times are better aligned with various prior attempts to
obfuscate password or PIN entry through the use of input
that is hard to observe such as Undercover (32 or 45 s
depending on condition) (Sasamoto et al., 2008) or work by
Bianchi et al. (2012) (8–20 second). Designing input to pro-
tect against an observation attack typically results in the
kind of prolonged input processes we observed with
PushPIN. In addition, PushPIN recorded no failed authenti-
cations within allowed maximum of five attempts, a level of
performance which is uncharacteristically high for work in
this area: Undercover, for example, resulted in error rates of
between 26% and 52%. This suggests that participants were
able to use the extended input times of PushPIN to achieve
highly accurate input, something that has not been possible
with many prior observation-resistant schemes. Taken
together, this combination of relatively long but accurate
authentication input makes PushPIN most suitable for cases
in which user authentication is required only occasionally.
This scenario is a good fit for a wearable device, where
authentication typically only occurs at the moment when
the device is donned (Nguyen & Memon, 2017).

A final important aspect of our usability results is the
challenges participant’s reported in terms of PushPIN’s
memorability: we recorded a somewhat low score of 2.27
out of 5. Our investigations of the remembrance strategy
participants employed provide material to make design sug-
gestions for feedback that may help boost this. For example,
we could display the input pressure level numerically within
the highlighted input button during PushPIN creation; this
multi-modal presentation may help participants as many
reported memorizing button entries spatially and pressure
entries numerically or rhythmically.

In sum, we believe the usability results reported in this
work, while mixed, are sufficient to support further investi-
gations of PushPIN or related systems that rely on pressure-
based input for authentication.

6.3. Limitation and future work

Despite these positives, there are some limitations to this
work. Firstly, we used a smartphone rather than a real
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smartwatch for collecting fine-grained pressure data. We did
this as current commercial smartwatches do not support
accurate multi-level pressure input. However, we believe
there is value in examining pressure on the watch form fac-
tor as this input modality has strong potential for extending
the expressiveness of touch input on small screens—pressure
input is well matched to wearables and likely to be included
in next-generation devices. We also believe that the ergo-
nomic differences between a watch and a phone are unlikely
to have affected the task performance we recorded—a phone
is a handheld device and, as such, it is sufficiently light to
be mounted on the wrist (Knight & Baber, 2007). In add-
ition, we note that motion features, which would be those
most likely to be impacted by variations in device weight or
size, contributed weakly to user verification performance
(see Table 6). We believe this suggests that the performance
we report would be replicated on a genuine smartwatch.
Future studies on actual smartwatches will be required to
formally test these suggestions and measure other important
metrics such as energy consumption and model train-
ing time.

A more significant limitation is that, in order to achieve
optimal security performance, our recognizer required a
training set of 25 PushPIN entries. This would be laborious
for users to create and is somewhat larger than that reported
for prior smartwatch authentication techniques (Nguyen &
Memon, 2018). To mitigate this problem, future work
should develop an adaptable recognizer that can incremen-
tally learn a user’s profile over samples captured over differ-
ent unlocks. In this way, a user would not be overburdened
by the need to provide a large number of samples during
the initial lock setup. Also, gathering samples over time
would likely increase the diversity of the samples captured
ultimately leading to a better representation of genuine user
behavior. Furthermore, this method will also enable
researchers to explore various forms of learning effect. For
example, as users become more familiar with PushPIN,
entry times likely decrease and input accuracy likely
increases. There is some evidence to support the presence of
these trends in our current data: in the enrollment session
in the current study, participants completed 30 PushPIN
entries and exhibited a modest (8 s–6 s) but significant
(p<0.05) learning effect in PushPIN entry time that plateaued
after making 16.79 entries (calculated by applying the linear-
plateau model). This may have impacted the classifier per-
formance we report as initial examples provided by novice
users poorly match later, and more practiced and fluent,
ones from experienced users. It may be that initial PushPIN
entries are best excluded from classifier training sets.
Furthermore, a prolonged enrollment process may enable
study of the more realistic password memorization and
recall experiences that occur over a protracted period. This
will complement and extend the data on compressed ses-
sions reported in this article. Such work should also revisit
the issue of PushPIN recall strategies explicitly. In the cur-
rent study, participants were not barred from using notes
and a minority (20%) reported using such aids. While we
can draw few conclusions from these behaviors in the

current study, future work should more formally control
them (e.g., bar or balance) to reduce confounds and more
fully understand PushPIN memorability.

It would also be worth exploring variations to the specific
design studied in this work. For example, to further increase
resistance to observation attacks, the graphical feedback pre-
sented during recall tasks could be redesigned to be less
explicit. Participants in our study were provided with graph-
ical feedback on the currently selected pressure level via
both a highlight and a gauge. This reflected the fact partici-
pants were unfamiliar with pressure input and intended to
support accurate performance of input tasks. More experi-
enced participants may be able to precisely enter pressure
input in the absence of this feedback, and doing so would
have the advantage of greatly obfuscating input from poten-
tial observers. Future work should explore how much pres-
sure level feedback experienced users require to maintain
system usability. In addition, this project used a fixed set of
four buttons and five pressure levels to input PushPIN
items. While these choices were grounded in literature,
future work could seek to develop an optimal combination
of the number of buttons and pressure levels used by sys-
tematically varying these properties. For example, it may be
that a reduced number of pressure input levels, combined
with a larger number of input buttons (e.g., three pressure
levels on six buttons) can lead to improvements in both
usability (reduced recall times) and security (reduced
EERs)—only further studies can identify the best values for
these parameters. Furthermore, the current work did not
consider the fact that behavioral biometric data may vary
depending on posture or activity; future studies that exam-
ine how poses impact the results reported here need to
be conducted.

7. Conclusion

This paper introduces PushPIN, an authentication system
that uses touch and wrist motion features derived from the
input of multiple pressure levels to build a usable and secure
primary unlock scheme for a smartwatch. Our studies show
PushPIN provides resilience against random guessing, rule-
based guessing, informed guessing attacks using personal
information, and video observation attack. Moreover, while
it shows elevated setup and recall times, input error rates
are very low. We suggest this combination of improved
security and high accuracy at a modest cost to efficiency
make PushPIN a viable possible candidate for unlocking sys-
tems on smartwatches, a device category on which unlock
events are relatively rare. Future research should develop the
classifiers used in this work further (to support incremental
learning or retraining), capture a larger sample of user
PushPINs (possibly without applying policies that restrict
item selection), examine whether performance with pressure
input increases over time, and explore other attack vectors,
such as smudge (Ranak et al., 2017). By continuing this
work, we hope to show that pressure-based unlock schemes
are a viable approach to increasing the security and accuracy
of user unlock tasks on small screen wearable devices.
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Note

1. http://freebrainagegames.com/recall.html
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